import gradio as gr import datasets import huggingface_hub import sys from pathlib import Path theme = gr.themes.Soft( primary_hue="green", ) def check_model(model_id): try: task = huggingface_hub.model_info(model_id).pipeline_tag except Exception: return None, None try: from transformers import pipeline ppl = pipeline(task=task, model=model_id) return model_id, ppl except Exception as e: return model_id, e def check_dataset(dataset_id, dataset_config="default", dataset_split="test"): try: configs = datasets.get_dataset_config_names(dataset_id) except Exception: # Dataset may not exist return None, dataset_config, dataset_split if dataset_config not in configs: # Need to choose dataset subset (config) return dataset_id, configs, dataset_split ds = datasets.load_dataset(dataset_id, dataset_config) if isinstance(ds, datasets.DatasetDict): # Need to choose dataset split if dataset_split not in ds.keys(): return dataset_id, None, list(ds.keys()) elif not isinstance(ds, datasets.Dataset): # Unknown type return dataset_id, None, None return dataset_id, dataset_config, dataset_split def try_submit(model_id, dataset_id, dataset_config, dataset_split, local): # Validate model m_id, ppl = check_model(model_id=model_id) if m_id is None: gr.Warning(f'Model "{model_id}" is not accessible. Please set your HF_TOKEN if it is a private model.') return dataset_config, dataset_split if isinstance(ppl, Exception): gr.Warning(f'Failed to load "{model_id} model": {ppl}') return dataset_config, dataset_split # Validate dataset d_id, config, split = check_dataset(dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split) dataset_ok = False if d_id is None: gr.Warning(f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.') elif isinstance(config, list): gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.') config = gr.Dropdown.update(choices=config, value=config[0]) elif isinstance(split, list): gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.') split = gr.Dropdown.update(choices=split, value=split[0]) else: dataset_ok = True if not dataset_ok: return config, split # TODO: Validate column mapping by running once del ppl if local: if "cicd" not in sys.path: sys.path.append("cicd") from giskard_cicd.loaders import HuggingFaceLoader from giskard_cicd.pipeline.runner import PipelineRunner from cicd.automation import create_discussion supported_loaders = { "huggingface": HuggingFaceLoader(), } runner = PipelineRunner(loaders=supported_loaders) runner_kwargs = { "loader_id": "huggingface", "model": m_id, "dataset": d_id, "scan_config": None, "dataset_split": split, "dataset_config": config, } report = runner.run(**runner_kwargs) # TODO: Publish it # rendered_report = report.to_markdown(template="github") # Cache locally rendered_report = report.to_html() output_dir = Path(f"output/{m_id}/{d_id}/{config}/{split}/") output_dir.mkdir(parents=True, exist_ok=True) with open(output_dir / "report.html", "w") as f: print(f'Writing to {output_dir / "report.html"}') f.write(rendered_report) return config, split with gr.Blocks(theme=theme) as iface: with gr.Row(): with gr.Column(): model_id_input = gr.Textbox( label="Hugging Face model id", placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest", ) # TODO: Add supported model pairs: Text Classification - text-classification model_type = gr.Dropdown( label="Hugging Face model type", choices=[ ("Auto-detect", 0), ("Text Classification", 1), ], value=0, ) run_local = gr.Checkbox(value=True, label="Run in this Space") with gr.Column(): dataset_id_input = gr.Textbox( label="Hugging Face dataset id", placeholder="tweet_eval", ) dataset_config_input = gr.Dropdown( label="Hugging Face dataset subset", choices=[ "default", ], allow_custom_value=True, value="default", ) dataset_split_input = gr.Dropdown( label="Hugging Face dataset split", choices=[ "test", ], allow_custom_value=True, value="test", ) with gr.Row(): run_btn = gr.Button("Validate and submit evaluation task", variant="primary") run_btn.click( try_submit, inputs=[ model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, run_local, ], outputs=[ dataset_config_input, dataset_split_input ], ) iface.queue(max_size=20) iface.launch()