|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
import evaluate |
|
import datasets |
|
from .bleu import * |
|
from .weighted_ngram_match import * |
|
from .syntax_match import * |
|
from .dataflow_match import * |
|
from tree_sitter import Language, Parser |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:module, |
|
title = {A great new module}, |
|
authors={huggingface, Inc.}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This new module is designed to solve this great ML task and is crafted with a lot of care. |
|
""" |
|
|
|
|
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Calculates how good are predictions given some references, using certain scores |
|
Args: |
|
predictions: list of predictions to score. Each predictions |
|
should be a string with tokens separated by spaces. |
|
references: list of reference for each prediction. Each |
|
reference should be a string with tokens separated by spaces. |
|
Returns: |
|
accuracy: description of the first score, |
|
another_score: description of the second score, |
|
Examples: |
|
Examples should be written in doctest format, and should illustrate how |
|
to use the function. |
|
|
|
>>> my_new_module = evaluate.load("my_new_module") |
|
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) |
|
>>> print(results) |
|
{'accuracy': 1.0} |
|
""" |
|
|
|
|
|
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" |
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class CodeBLEU(evaluate.Metric): |
|
"""TODO: Short description of my evaluation module.""" |
|
|
|
def _info(self): |
|
|
|
return evaluate.MetricInfo( |
|
|
|
module_type="metric", |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
|
|
features=datasets.Features({ |
|
'predictions': datasets.Value('int64'), |
|
'references': datasets.Value('int64'), |
|
}), |
|
|
|
homepage="http://module.homepage", |
|
|
|
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], |
|
reference_urls=["http://path.to.reference.url/new_module"] |
|
) |
|
|
|
def _download_and_prepare(self, dl_manager): |
|
"""Optional: download external resources useful to compute the scores""" |
|
|
|
if self.config_name == "python": |
|
Language.build_library('./parser/my-languages.so',['tree-sitter-python']) |
|
elif self.config_name == "go": |
|
Language.build_library('./parser/my-languages.so',['tree-sitter-go']) |
|
elif self.config_name == "javascript": |
|
Language.build_library('./parser/my-languages.so',['tree-sitter-javascript']) |
|
elif self.config_name == "php": |
|
Language.build_library('./parser/my-languages.so',['tree-sitter-php']) |
|
elif self.config_name == "java": |
|
Language.build_library('./parser/my-languages.so',['tree-sitter-java']) |
|
elif self.config_name == "ruby": |
|
Language.build_library('./parser/my-languages.so',['tree-sitter-ruby']) |
|
elif self.config_name == "c-sharp": |
|
Language.build_library('./parser/my-languages.so',['tree-sitter-c-sharp']) |
|
elif self.config_name == "cpp": |
|
Language.build_library('./parser/my-languages.so',['tree-sitter-cpp']) |
|
|
|
|
|
def _compute(self, predictions, references, language, alpha=0.25, beta=0.25, gamma=0.25, theta=0.25): |
|
|
|
|
|
pre_references = [[x.strip() for x in open(file, 'r', encoding='utf-8').readlines()] \ |
|
for file in references] |
|
hypothesis = [x.strip() for x in open(predictions, 'r', encoding='utf-8').readlines()] |
|
|
|
for i in range(len(pre_references)): |
|
assert len(hypothesis) == len(pre_references[i]) |
|
|
|
references = [] |
|
for i in range(len(hypothesis)): |
|
ref_for_instance = [] |
|
for j in range(len(pre_references)): |
|
ref_for_instance.append(pre_references[j][i]) |
|
references.append(ref_for_instance) |
|
assert len(references) == len(pre_references)*len(hypothesis) |
|
|
|
|
|
|
|
tokenized_hyps = [x.split() for x in hypothesis] |
|
tokenized_refs = [[x.split() for x in reference] for reference in references] |
|
|
|
ngram_match_score = bleu.corpus_bleu(tokenized_refs,tokenized_hyps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
keywords = [x.strip() for x in open('./keywords/'+ language +'.txt', 'r', encoding='utf-8').readlines()] |
|
def make_weights(reference_tokens, key_word_list): |
|
return {token:1 if token in key_word_list else 0.2 \ |
|
for token in reference_tokens} |
|
tokenized_refs_with_weights = [[[reference_tokens, make_weights(reference_tokens, keywords)]\ |
|
for reference_tokens in reference] for reference in tokenized_refs] |
|
|
|
weighted_ngram_match_score = weighted_ngram_match.corpus_bleu(tokenized_refs_with_weights,tokenized_hyps) |
|
|
|
|
|
syntax_match_score = syntax_match.corpus_syntax_match(references, hypothesis, language) |
|
|
|
|
|
dataflow_match_score = dataflow_match.corpus_dataflow_match(references, hypothesis, language) |
|
|
|
|
|
|
|
code_bleu_score = alpha*ngram_match_score\ |
|
+ beta*weighted_ngram_match_score\ |
|
+ gamma*syntax_match_score\ |
|
+ theta*dataflow_match_score |
|
return { |
|
"ngram_match_score": ngram_match_score, |
|
"weighted_ngram_match_score": weighted_ngram_match_score, |
|
"syntax_match_score": syntax_match_score, |
|
"dataflow_match_score": dataflow_match_score, |
|
"code_bleu_score": code_bleu_score |
|
} |