|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""BLEU score implementation.""" |
|
|
|
import math |
|
import sys |
|
from fractions import Fraction |
|
import warnings |
|
from collections import Counter |
|
|
|
from .utils import ngrams |
|
import pdb |
|
|
|
|
|
def sentence_bleu( |
|
references, |
|
hypothesis, |
|
weights=(0.25, 0.25, 0.25, 0.25), |
|
smoothing_function=None, |
|
auto_reweigh=False, |
|
): |
|
""" |
|
Calculate BLEU score (Bilingual Evaluation Understudy) from |
|
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. |
|
"BLEU: a method for automatic evaluation of machine translation." |
|
In Proceedings of ACL. http://www.aclweb.org/anthology/P02-1040.pdf |
|
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', |
|
... 'ensures', 'that', 'the', 'military', 'always', |
|
... 'obeys', 'the', 'commands', 'of', 'the', 'party'] |
|
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops', |
|
... 'forever', 'hearing', 'the', 'activity', 'guidebook', |
|
... 'that', 'party', 'direct'] |
|
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', |
|
... 'ensures', 'that', 'the', 'military', 'will', 'forever', |
|
... 'heed', 'Party', 'commands'] |
|
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which', |
|
... 'guarantees', 'the', 'military', 'forces', 'always', |
|
... 'being', 'under', 'the', 'command', 'of', 'the', |
|
... 'Party'] |
|
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', |
|
... 'army', 'always', 'to', 'heed', 'the', 'directions', |
|
... 'of', 'the', 'party'] |
|
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS |
|
0.5045... |
|
If there is no ngrams overlap for any order of n-grams, BLEU returns the |
|
value 0. This is because the precision for the order of n-grams without |
|
overlap is 0, and the geometric mean in the final BLEU score computation |
|
multiplies the 0 with the precision of other n-grams. This results in 0 |
|
(independently of the precision of the othe n-gram orders). The following |
|
example has zero 3-gram and 4-gram overlaps: |
|
>>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS |
|
0.0 |
|
To avoid this harsh behaviour when no ngram overlaps are found a smoothing |
|
function can be used. |
|
>>> chencherry = SmoothingFunction() |
|
>>> sentence_bleu([reference1, reference2, reference3], hypothesis2, |
|
... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS |
|
0.0370... |
|
The default BLEU calculates a score for up to 4-grams using uniform |
|
weights (this is called BLEU-4). To evaluate your translations with |
|
higher/lower order ngrams, use customized weights. E.g. when accounting |
|
for up to 5-grams with uniform weights (this is called BLEU-5) use: |
|
>>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.) |
|
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS |
|
0.3920... |
|
:param references: reference sentences |
|
:type references: list(list(str)) |
|
:param hypothesis: a hypothesis sentence |
|
:type hypothesis: list(str) |
|
:param weights: weights for unigrams, bigrams, trigrams and so on |
|
:type weights: list(float) |
|
:param smoothing_function: |
|
:type smoothing_function: SmoothingFunction |
|
:param auto_reweigh: Option to re-normalize the weights uniformly. |
|
:type auto_reweigh: bool |
|
:return: The sentence-level BLEU score. |
|
:rtype: float |
|
""" |
|
return corpus_bleu( |
|
[references], [hypothesis], weights, smoothing_function, auto_reweigh |
|
) |
|
|
|
|
|
def corpus_bleu( |
|
list_of_references, |
|
hypotheses, |
|
weights=(0.25, 0.25, 0.25, 0.25), |
|
smoothing_function=None, |
|
auto_reweigh=False, |
|
): |
|
""" |
|
Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all |
|
the hypotheses and their respective references. |
|
Instead of averaging the sentence level BLEU scores (i.e. marco-average |
|
precision), the original BLEU metric (Papineni et al. 2002) accounts for |
|
the micro-average precision (i.e. summing the numerators and denominators |
|
for each hypothesis-reference(s) pairs before the division). |
|
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', |
|
... 'ensures', 'that', 'the', 'military', 'always', |
|
... 'obeys', 'the', 'commands', 'of', 'the', 'party'] |
|
>>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', |
|
... 'ensures', 'that', 'the', 'military', 'will', 'forever', |
|
... 'heed', 'Party', 'commands'] |
|
>>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which', |
|
... 'guarantees', 'the', 'military', 'forces', 'always', |
|
... 'being', 'under', 'the', 'command', 'of', 'the', 'Party'] |
|
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', |
|
... 'army', 'always', 'to', 'heed', 'the', 'directions', |
|
... 'of', 'the', 'party'] |
|
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', |
|
... 'interested', 'in', 'world', 'history'] |
|
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', |
|
... 'because', 'he', 'read', 'the', 'book'] |
|
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] |
|
>>> hypotheses = [hyp1, hyp2] |
|
>>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS |
|
0.5920... |
|
The example below show that corpus_bleu() is different from averaging |
|
sentence_bleu() for hypotheses |
|
>>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1) |
|
>>> score2 = sentence_bleu([ref2a], hyp2) |
|
>>> (score1 + score2) / 2 # doctest: +ELLIPSIS |
|
0.6223... |
|
:param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses |
|
:type list_of_references: list(list(list(str))) |
|
:param hypotheses: a list of hypothesis sentences |
|
:type hypotheses: list(list(str)) |
|
:param weights: weights for unigrams, bigrams, trigrams and so on |
|
:type weights: list(float) |
|
:param smoothing_function: |
|
:type smoothing_function: SmoothingFunction |
|
:param auto_reweigh: Option to re-normalize the weights uniformly. |
|
:type auto_reweigh: bool |
|
:return: The corpus-level BLEU score. |
|
:rtype: float |
|
""" |
|
|
|
|
|
p_numerators = Counter() |
|
p_denominators = Counter() |
|
hyp_lengths, ref_lengths = 0, 0 |
|
|
|
assert len(list_of_references) == len(hypotheses), ( |
|
"The number of hypotheses and their reference(s) should be the " "same " |
|
) |
|
|
|
|
|
for references, hypothesis in zip(list_of_references, hypotheses): |
|
|
|
|
|
for i, _ in enumerate(weights, start=1): |
|
p_i = modified_precision(references, hypothesis, i) |
|
p_numerators[i] += p_i.numerator |
|
p_denominators[i] += p_i.denominator |
|
|
|
|
|
|
|
hyp_len = len(hypothesis) |
|
hyp_lengths += hyp_len |
|
ref_lengths += closest_ref_length(references, hyp_len) |
|
|
|
|
|
bp = brevity_penalty(ref_lengths, hyp_lengths) |
|
|
|
|
|
|
|
if auto_reweigh: |
|
if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25): |
|
weights = (1 / hyp_lengths,) * hyp_lengths |
|
|
|
|
|
p_n = [ |
|
Fraction(p_numerators[i], p_denominators[i], _normalize=False) |
|
for i, _ in enumerate(weights, start=1) |
|
] |
|
|
|
|
|
|
|
|
|
if p_numerators[1] == 0: |
|
return 0 |
|
|
|
|
|
if not smoothing_function: |
|
smoothing_function = SmoothingFunction().method1 |
|
|
|
|
|
|
|
|
|
p_n = smoothing_function( |
|
p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths |
|
) |
|
s = (w_i * math.log(p_i) for w_i, p_i in zip(weights, p_n)) |
|
s = bp * math.exp(math.fsum(s)) |
|
return s |
|
|
|
|
|
def modified_precision(references, hypothesis, n): |
|
""" |
|
Calculate modified ngram precision. |
|
The normal precision method may lead to some wrong translations with |
|
high-precision, e.g., the translation, in which a word of reference |
|
repeats several times, has very high precision. |
|
This function only returns the Fraction object that contains the numerator |
|
and denominator necessary to calculate the corpus-level precision. |
|
To calculate the modified precision for a single pair of hypothesis and |
|
references, cast the Fraction object into a float. |
|
The famous "the the the ... " example shows that you can get BLEU precision |
|
by duplicating high frequency words. |
|
>>> reference1 = 'the cat is on the mat'.split() |
|
>>> reference2 = 'there is a cat on the mat'.split() |
|
>>> hypothesis1 = 'the the the the the the the'.split() |
|
>>> references = [reference1, reference2] |
|
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS |
|
0.2857... |
|
In the modified n-gram precision, a reference word will be considered |
|
exhausted after a matching hypothesis word is identified, e.g. |
|
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', |
|
... 'ensures', 'that', 'the', 'military', 'will', |
|
... 'forever', 'heed', 'Party', 'commands'] |
|
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which', |
|
... 'guarantees', 'the', 'military', 'forces', 'always', |
|
... 'being', 'under', 'the', 'command', 'of', 'the', |
|
... 'Party'] |
|
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', |
|
... 'army', 'always', 'to', 'heed', 'the', 'directions', |
|
... 'of', 'the', 'party'] |
|
>>> hypothesis = 'of the'.split() |
|
>>> references = [reference1, reference2, reference3] |
|
>>> float(modified_precision(references, hypothesis, n=1)) |
|
1.0 |
|
>>> float(modified_precision(references, hypothesis, n=2)) |
|
1.0 |
|
An example of a normal machine translation hypothesis: |
|
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', |
|
... 'ensures', 'that', 'the', 'military', 'always', |
|
... 'obeys', 'the', 'commands', 'of', 'the', 'party'] |
|
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops', |
|
... 'forever', 'hearing', 'the', 'activity', 'guidebook', |
|
... 'that', 'party', 'direct'] |
|
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', |
|
... 'ensures', 'that', 'the', 'military', 'will', |
|
... 'forever', 'heed', 'Party', 'commands'] |
|
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which', |
|
... 'guarantees', 'the', 'military', 'forces', 'always', |
|
... 'being', 'under', 'the', 'command', 'of', 'the', |
|
... 'Party'] |
|
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', |
|
... 'army', 'always', 'to', 'heed', 'the', 'directions', |
|
... 'of', 'the', 'party'] |
|
>>> references = [reference1, reference2, reference3] |
|
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS |
|
0.9444... |
|
>>> float(modified_precision(references, hypothesis2, n=1)) # doctest: +ELLIPSIS |
|
0.5714... |
|
>>> float(modified_precision(references, hypothesis1, n=2)) # doctest: +ELLIPSIS |
|
0.5882352941176471 |
|
>>> float(modified_precision(references, hypothesis2, n=2)) # doctest: +ELLIPSIS |
|
0.07692... |
|
:param references: A list of reference translations. |
|
:type references: list(list(str)) |
|
:param hypothesis: A hypothesis translation. |
|
:type hypothesis: list(str) |
|
:param n: The ngram order. |
|
:type n: int |
|
:return: BLEU's modified precision for the nth order ngram. |
|
:rtype: Fraction |
|
""" |
|
|
|
|
|
|
|
counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter() |
|
|
|
|
|
max_counts = {} |
|
for reference in references: |
|
reference_counts = ( |
|
Counter(ngrams(reference, n)) if len(reference) >= n else Counter() |
|
) |
|
for ngram in counts: |
|
max_counts[ngram] = max(max_counts.get(ngram, 0), reference_counts[ngram]) |
|
|
|
|
|
clipped_counts = { |
|
ngram: min(count, max_counts[ngram]) for ngram, count in counts.items() |
|
} |
|
|
|
numerator = sum(clipped_counts.values()) |
|
|
|
|
|
denominator = max(1, sum(counts.values())) |
|
|
|
return Fraction(numerator, denominator, _normalize=False) |
|
|
|
|
|
def closest_ref_length(references, hyp_len): |
|
""" |
|
This function finds the reference that is the closest length to the |
|
hypothesis. The closest reference length is referred to as *r* variable |
|
from the brevity penalty formula in Papineni et. al. (2002) |
|
:param references: A list of reference translations. |
|
:type references: list(list(str)) |
|
:param hyp_len: The length of the hypothesis. |
|
:type hyp_len: int |
|
:return: The length of the reference that's closest to the hypothesis. |
|
:rtype: int |
|
""" |
|
ref_lens = (len(reference) for reference in references) |
|
closest_ref_len = min( |
|
ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len) |
|
) |
|
return closest_ref_len |
|
|
|
|
|
def brevity_penalty(closest_ref_len, hyp_len): |
|
""" |
|
Calculate brevity penalty. |
|
As the modified n-gram precision still has the problem from the short |
|
length sentence, brevity penalty is used to modify the overall BLEU |
|
score according to length. |
|
An example from the paper. There are three references with length 12, 15 |
|
and 17. And a concise hypothesis of the length 12. The brevity penalty is 1. |
|
>>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12 |
|
>>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15 |
|
>>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17 |
|
>>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12 |
|
>>> references = [reference1, reference2, reference3] |
|
>>> hyp_len = len(hypothesis) |
|
>>> closest_ref_len = closest_ref_length(references, hyp_len) |
|
>>> brevity_penalty(closest_ref_len, hyp_len) |
|
1.0 |
|
In case a hypothesis translation is shorter than the references, penalty is |
|
applied. |
|
>>> references = [['a'] * 28, ['a'] * 28] |
|
>>> hypothesis = ['a'] * 12 |
|
>>> hyp_len = len(hypothesis) |
|
>>> closest_ref_len = closest_ref_length(references, hyp_len) |
|
>>> brevity_penalty(closest_ref_len, hyp_len) |
|
0.2635971381157267 |
|
The length of the closest reference is used to compute the penalty. If the |
|
length of a hypothesis is 12, and the reference lengths are 13 and 2, the |
|
penalty is applied because the hypothesis length (12) is less then the |
|
closest reference length (13). |
|
>>> references = [['a'] * 13, ['a'] * 2] |
|
>>> hypothesis = ['a'] * 12 |
|
>>> hyp_len = len(hypothesis) |
|
>>> closest_ref_len = closest_ref_length(references, hyp_len) |
|
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS |
|
0.9200... |
|
The brevity penalty doesn't depend on reference order. More importantly, |
|
when two reference sentences are at the same distance, the shortest |
|
reference sentence length is used. |
|
>>> references = [['a'] * 13, ['a'] * 11] |
|
>>> hypothesis = ['a'] * 12 |
|
>>> hyp_len = len(hypothesis) |
|
>>> closest_ref_len = closest_ref_length(references, hyp_len) |
|
>>> bp1 = brevity_penalty(closest_ref_len, hyp_len) |
|
>>> hyp_len = len(hypothesis) |
|
>>> closest_ref_len = closest_ref_length(reversed(references), hyp_len) |
|
>>> bp2 = brevity_penalty(closest_ref_len, hyp_len) |
|
>>> bp1 == bp2 == 1 |
|
True |
|
A test example from mteval-v13a.pl (starting from the line 705): |
|
>>> references = [['a'] * 11, ['a'] * 8] |
|
>>> hypothesis = ['a'] * 7 |
|
>>> hyp_len = len(hypothesis) |
|
>>> closest_ref_len = closest_ref_length(references, hyp_len) |
|
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS |
|
0.8668... |
|
>>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7] |
|
>>> hypothesis = ['a'] * 7 |
|
>>> hyp_len = len(hypothesis) |
|
>>> closest_ref_len = closest_ref_length(references, hyp_len) |
|
>>> brevity_penalty(closest_ref_len, hyp_len) |
|
1.0 |
|
:param hyp_len: The length of the hypothesis for a single sentence OR the |
|
sum of all the hypotheses' lengths for a corpus |
|
:type hyp_len: int |
|
:param closest_ref_len: The length of the closest reference for a single |
|
hypothesis OR the sum of all the closest references for every hypotheses. |
|
:type closest_ref_len: int |
|
:return: BLEU's brevity penalty. |
|
:rtype: float |
|
""" |
|
if hyp_len > closest_ref_len: |
|
return 1 |
|
|
|
elif hyp_len == 0: |
|
return 0 |
|
else: |
|
return math.exp(1 - closest_ref_len / hyp_len) |
|
|
|
|
|
class SmoothingFunction: |
|
""" |
|
This is an implementation of the smoothing techniques |
|
for segment-level BLEU scores that was presented in |
|
Boxing Chen and Collin Cherry (2014) A Systematic Comparison of |
|
Smoothing Techniques for Sentence-Level BLEU. In WMT14. |
|
http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf |
|
""" |
|
|
|
def __init__(self, epsilon=0.1, alpha=5, k=5): |
|
""" |
|
This will initialize the parameters required for the various smoothing |
|
techniques, the default values are set to the numbers used in the |
|
experiments from Chen and Cherry (2014). |
|
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures', |
|
... 'that', 'the', 'military', 'always', 'obeys', 'the', |
|
... 'commands', 'of', 'the', 'party'] |
|
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures', |
|
... 'that', 'the', 'military', 'will', 'forever', 'heed', |
|
... 'Party', 'commands'] |
|
>>> chencherry = SmoothingFunction() |
|
>>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS |
|
0.4118... |
|
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS |
|
0.4118... |
|
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS |
|
0.4118... |
|
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS |
|
0.4489... |
|
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS |
|
0.4118... |
|
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS |
|
0.4118... |
|
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS |
|
0.4905... |
|
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS |
|
0.4135... |
|
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS |
|
0.4905... |
|
:param epsilon: the epsilon value use in method 1 |
|
:type epsilon: float |
|
:param alpha: the alpha value use in method 6 |
|
:type alpha: int |
|
:param k: the k value use in method 4 |
|
:type k: int |
|
""" |
|
self.epsilon = epsilon |
|
self.alpha = alpha |
|
self.k = k |
|
|
|
def method0(self, p_n, *args, **kwargs): |
|
""" |
|
No smoothing. |
|
""" |
|
p_n_new = [] |
|
for i, p_i in enumerate(p_n): |
|
if p_i.numerator != 0: |
|
p_n_new.append(p_i) |
|
else: |
|
_msg = str( |
|
"\nThe hypothesis contains 0 counts of {}-gram overlaps.\n" |
|
"Therefore the BLEU score evaluates to 0, independently of\n" |
|
"how many N-gram overlaps of lower order it contains.\n" |
|
"Consider using lower n-gram order or use " |
|
"SmoothingFunction()" |
|
).format(i + 1) |
|
warnings.warn(_msg) |
|
|
|
|
|
|
|
|
|
|
|
p_n_new.append(sys.float_info.min) |
|
return p_n_new |
|
|
|
def method1(self, p_n, *args, **kwargs): |
|
""" |
|
Smoothing method 1: Add *epsilon* counts to precision with 0 counts. |
|
""" |
|
return [ |
|
(p_i.numerator + self.epsilon) / p_i.denominator |
|
if p_i.numerator == 0 |
|
else p_i |
|
for p_i in p_n |
|
] |
|
|
|
def method2(self, p_n, *args, **kwargs): |
|
""" |
|
Smoothing method 2: Add 1 to both numerator and denominator from |
|
Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of |
|
machine translation quality using longest common subsequence and |
|
skip-bigram statistics. In ACL04. |
|
""" |
|
return [ |
|
Fraction(p_i.numerator + 1, p_i.denominator + 1, _normalize=False) |
|
for p_i in p_n |
|
] |
|
|
|
def method3(self, p_n, *args, **kwargs): |
|
""" |
|
Smoothing method 3: NIST geometric sequence smoothing |
|
The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each |
|
precision score whose matching n-gram count is null. |
|
k is 1 for the first 'n' value for which the n-gram match count is null/ |
|
For example, if the text contains: |
|
- one 2-gram match |
|
- and (consequently) two 1-gram matches |
|
the n-gram count for each individual precision score would be: |
|
- n=1 => prec_count = 2 (two unigrams) |
|
- n=2 => prec_count = 1 (one bigram) |
|
- n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1) |
|
- n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2) |
|
""" |
|
incvnt = 1 |
|
for i, p_i in enumerate(p_n): |
|
if p_i.numerator == 0: |
|
p_n[i] = 1 / (2 ** incvnt * p_i.denominator) |
|
incvnt += 1 |
|
return p_n |
|
|
|
def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs): |
|
""" |
|
Smoothing method 4: |
|
Shorter translations may have inflated precision values due to having |
|
smaller denominators; therefore, we give them proportionally |
|
smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry |
|
suggests dividing by 1/ln(len(T)), where T is the length of the translation. |
|
""" |
|
hyp_len = hyp_len if hyp_len else len(hypothesis) |
|
for i, p_i in enumerate(p_n): |
|
if p_i.numerator == 0 and hyp_len != 0: |
|
incvnt = i + 1 * self.k / math.log( |
|
hyp_len |
|
) |
|
p_n[i] = incvnt / p_i.denominator |
|
return p_n |
|
|
|
def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs): |
|
""" |
|
Smoothing method 5: |
|
The matched counts for similar values of n should be similar. To a |
|
calculate the n-gram matched count, it averages the n−1, n and n+1 gram |
|
matched counts. |
|
""" |
|
hyp_len = hyp_len if hyp_len else len(hypothesis) |
|
m = {} |
|
|
|
p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)] |
|
m[-1] = p_n[0] + 1 |
|
for i, p_i in enumerate(p_n): |
|
p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3 |
|
m[i] = p_n[i] |
|
return p_n |
|
|
|
def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs): |
|
""" |
|
Smoothing method 6: |
|
Interpolates the maximum likelihood estimate of the precision *p_n* with |
|
a prior estimate *pi0*. The prior is estimated by assuming that the ratio |
|
between pn and pn−1 will be the same as that between pn−1 and pn−2; from |
|
Gao and He (2013) Training MRF-Based Phrase Translation Models using |
|
Gradient Ascent. In NAACL. |
|
""" |
|
hyp_len = hyp_len if hyp_len else len(hypothesis) |
|
|
|
|
|
|
|
assert p_n[2], "This smoothing method requires non-zero precision for bigrams." |
|
for i, p_i in enumerate(p_n): |
|
if i in [0, 1]: |
|
continue |
|
else: |
|
pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2] |
|
|
|
m = p_i.numerator |
|
|
|
l = sum(1 for _ in ngrams(hypothesis, i + 1)) |
|
|
|
p_n[i] = (m + self.alpha * pi0) / (l + self.alpha) |
|
return p_n |
|
|
|
def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs): |
|
""" |
|
Smoothing method 7: |
|
Interpolates methods 4 and 5. |
|
""" |
|
hyp_len = hyp_len if hyp_len else len(hypothesis) |
|
p_n = self.method4(p_n, references, hypothesis, hyp_len) |
|
p_n = self.method5(p_n, references, hypothesis, hyp_len) |
|
return p_n |
|
|