Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import transformers | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
from peft import PeftConfig, PeftModel | |
import warnings | |
warnings.filterwarnings("ignore") | |
PEFT_MODEL = "givyboy/phi-2-finetuned-mental-health-conversational" | |
SYSTEM_PROMPT = """Answer the following question truthfully. | |
If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'. | |
If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'.""" | |
USER_PROMPT = lambda x: f"""<HUMAN>: {x}\n<ASSISTANT>: """ | |
ADD_RESPONSE = lambda x, y: f"""<HUMAN>: {x}\n<ASSISTANT>: {y}""" | |
# bnb_config = BitsAndBytesConfig( | |
# load_in_4bit=True, | |
# bnb_4bit_quant_type="nf4", | |
# bnb_4bit_use_double_quant=True, | |
# bnb_4bit_compute_dtype=torch.float16, | |
# ) | |
config = PeftConfig.from_pretrained(PEFT_MODEL) | |
peft_base_model = AutoModelForCausalLM.from_pretrained( | |
config.base_model_name_or_path, | |
return_dict=True, | |
# quantization_config=bnb_config, | |
device_map="auto", | |
trust_remote_code=True, | |
offload_folder="offload/", | |
offload_state_dict=True, | |
) | |
peft_model = PeftModel.from_pretrained( | |
peft_base_model, | |
PEFT_MODEL, | |
offload_folder="offload/", | |
offload_state_dict=True, | |
) | |
peft_tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
peft_tokenizer.pad_token = peft_tokenizer.eos_token | |
pipeline = transformers.pipeline( | |
"text-generation", | |
model=peft_model, | |
tokenizer=peft_tokenizer, | |
torch_dtype=torch.bfloat16, | |
trust_remote_code=True, | |
device_map="auto", | |
) | |
def format_message(message: str, history: list[str], memory_limit: int = 3) -> str: | |
if len(history) > memory_limit: | |
history = history[-memory_limit:] | |
if len(history) == 0: | |
return f"{SYSTEM_PROMPT}\n{USER_PROMPT(message)}" | |
formatted_message = f"{SYSTEM_PROMPT}\n{ADD_RESPONSE(history[0][0], history[0][1])}" | |
for msg, ans in history[1:]: | |
formatted_message += f"\n{ADD_RESPONSE(msg, ans)}" | |
formatted_message += f"\n{USER_PROMPT(message)}" | |
return formatted_message | |
def get_model_response(message: str, history: list[str]) -> str: | |
formatted_message = format_message(message, history) | |
sequences = pipeline( | |
formatted_message, | |
do_sample=True, | |
top_k=10, | |
num_return_sequences=1, | |
eos_token_id=peft_tokenizer.eos_token_id, | |
max_length=600, | |
)[0] | |
print(sequences["generated_text"]) | |
output = sequences["generated_text"].split("<ASSISTANT>:")[-1].strip() | |
# print(f"Response: {output}") | |
return output | |
gr.ChatInterface(fn=get_model_response).launch() | |