Spaces:
Sleeping
Sleeping
File size: 2,498 Bytes
3138369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
from model_def import TextClassifier
from mor import tokenize
import pickle
import gradio as gr
import subprocess
embedding_dim = 100
hidden_dim = 128
output_dim = 2
vocab_size=17391
USE_CUDA = torch.cuda.is_available()
device = torch.device("cuda" if USE_CUDA else "cpu")
model_name='08221228'
model = TextClassifier(vocab_size, embedding_dim, hidden_dim, output_dim)
model.load_state_dict(torch.load('best_model_checkpoint'+model_name+'.pth',map_location=device))
model.to(device)
with open('word_to_index.pkl', 'rb') as f:
word_to_index = pickle.load(f)
index_to_tag = {0 : '๋ถ์ ', 1 : '๊ธ์ '}
def predict(text, model, word_to_index, index_to_tag):
# Set the model to evaluation mode
model.eval()
tokens= tokenize(text)
token_indices = [word_to_index.get(token, 1) for token in tokens]
input_tensor = torch.tensor([token_indices], dtype=torch.long).to(device)
# Pass the input tensor through the model
with torch.no_grad():
logits = model(input_tensor) # (1, output_dim)
# Apply softmax to the logits
probs = F.softmax(logits, dim=1)
topv, topi = torch.topk(probs, 2)
predictions = [(round(topv[0][i].item(), 2), index_to_tag[topi[0][i].item()]) for i in range(2)]
# Get the predicted class index
predicted_index = torch.argmax(logits, dim=1)
# Convert the predicted index to its corresponding tag
predicted_tag = index_to_tag[predicted_index.item()]
return predictions
def name_classifier(test_input):
result=predict(test_input, model, word_to_index, index_to_tag)
print(result)
return {result[0][1]: result[0][0], result[1][1]: result[1][0]}
demo = gr.Interface(
fn=name_classifier,
inputs="text",
outputs="label",
title="์ํ ๋ฆฌ๋ทฐ ๊ฐ์ฑ ๋ถ์ LSTM ๋ชจ๋ธ",
description="์ด ๋ชจ๋ธ์ ์ํ ๋ฆฌ๋ทฐ ํ
์คํธ๋ฅผ ์
๋ ฅ๋ฐ์ ๊ฐ์ฑ ๋ถ์์ ์ํํ์ฌ, ๊ธ์ ์ ๋๋ ๋ถ์ ์ ์ธ ๊ฐ์ ์ ์์ธกํฉ๋๋ค. LSTM ๊ธฐ๋ฐ์ ํ
์คํธ ๋ถ๋ฅ ๋ชจ๋ธ์
๋๋ค. ์ด ๋ชจ๋ธ์ ์ํค๋
์ค์ [13-02 LSTM์ ์ด์ฉํ ๋ค์ด๋ฒ ์ํ ๋ฆฌ๋ทฐ ๋ถ๋ฅ](https://wikidocs.net/217687)๋ฅผ ๋ฐํ์ผ๋ก ์ ์ํ ์์ ์
๋๋ค.",
examples=[["๋ญ๊ฐ ๋งบ์์ด ์๋ ๋๋.."], [" ํ์ธํ๊ณผ ๋ก๋ฏธ์ ์ฌ๋์ด์ผ๊ธฐ...์์ธ๋ก ost๊ฐ ๋๋ฌด ์ข์์! "]]
)
demo.launch()
|