import torch.nn as nn class TextClassifier(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim): super(TextClassifier, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): embedded = self.embedding(x) lstm_out, (hidden, cell) = self.lstm(embedded) last_hidden = hidden.squeeze(0) logits = self.fc(last_hidden) return logits