import matplotlib.pyplot as plt import librosa import librosa.display import numpy as np import os,sys import ruptures as rpt from glob import glob import soundfile import csv import gradio as gr def fig_ax(figsize=(15, 5), dpi=150): """Return a (matplotlib) figure and ax objects with given size.""" return plt.subplots(figsize=figsize, dpi=dpi) def get_sum_of_cost(algo, n_bkps) -> float: """Return the sum of costs for the change points `bkps`""" bkps = algo.predict(n_bkps=n_bkps) return algo.cost.sum_of_costs(bkps) def variable_outputs(k): k = int(k) return [gr.Audio(visible=True)]*k + [gr.Audio(visible=False)]*(10-k) def generate(wavfile,target_sampling_rate,hop_length_tempo,n_bkps_max): if target_sampling_rate is not None: signal2, sampling_rate = librosa.load(wavfile,sr=target_sampling_rate,mono=False) else: signal2, sampling_rate = librosa.load(wavfile,mono=False) signal = signal2.sum(axis=0) / 2 # Compute the onset strength hop_length_tempo = 512 oenv = librosa.onset.onset_strength( y=signal, sr=sampling_rate, hop_length=hop_length_tempo ) # Compute the tempogram tempogram = librosa.feature.tempogram( onset_envelope=oenv, sr=sampling_rate, hop_length=hop_length_tempo, ) algo = rpt.KernelCPD(kernel="linear").fit(tempogram.T) # Choose the number of changes (elbow heuristic) n_bkps_max = 10 # K_max # Start by computing the segmentation with most changes. # After start, all segmentations with 1, 2,..., K_max-1 changes are also available for free. _ = algo.predict(n_bkps_max) array_of_n_bkps = np.arange(1, n_bkps_max + 1) ex = [get_sum_of_cost(algo=algo, n_bkps=n_bkps) for n_bkps in array_of_n_bkps] # print(ex[0]) biggiest=0 for i in range(1,len(ex)): if abs(ex[i]- ex[i-1])>biggiest: biggiest=abs(ex[i]- ex[i-1]) n_bkps=i+2 bkps = algo.predict(n_bkps=n_bkps) # Convert the estimated change points (frame counts) to actual timestamps bkps_times = librosa.frames_to_time(bkps, sr=sampling_rate, hop_length=hop_length_tempo) # Compute change points corresponding indexes in original signal bkps_time_indexes = (sampling_rate * bkps_times).astype(int).tolist() bkps = [i//sampling_rate for i in bkps_time_indexes] # print(bkps_time_indexes) new_bkps_time_indexes =[] if len(bkps_time_indexes)>2: for i in range(len(bkps_time_indexes)): if i==0: if bkps_time_indexes[i]>=10*sampling_rate: new_bkps_time_indexes.append(bkps_time_indexes[i]) elif i==len(bkps_time_indexes)-1: if bkps_time_indexes[i]-bkps_time_indexes[i-1]<5*sampling_rate: new_bkps_time_indexes.remove(new_bkps_time_indexes[-1]) new_bkps_time_indexes.append(bkps_time_indexes[i]) else: if bkps_time_indexes[i]-bkps_time_indexes[i-1]>=10*sampling_rate: new_bkps_time_indexes.append(bkps_time_indexes[i]) bkps_time_indexes = new_bkps_time_indexes fig, ax = fig_ax() _ = librosa.display.specshow( tempogram, ax=ax, x_axis="s", y_axis="tempo", hop_length=hop_length_tempo, sr=sampling_rate, ) new_bkps_times = [ x/sampling_rate for x in bkps_time_indexes] for b in new_bkps_times: ax.axvline(b, ls="--", color="white", lw=4) seg_list = [] for segment_number, (start, end) in enumerate( rpt.utils.pairwise([0] + bkps_time_indexes), start=1 ): save_name= f"output_{segment_number}.mp3" segment = signal2[:,start:end] seg_list.append(save_name) soundfile.write(save_name, segment.T, int(sampling_rate), format='MP3' ) seg_len = len(seg_list) for i in range(10-seg_len): seg_list.append("None") return fig,seg_len,*seg_list def list_map(lists): print(len(lists), len(RESULTS)) for i in range(len(lists)): RESULTS[i]= str(lists[i]) return RESULTS with gr.Blocks() as demo: gr.Markdown( ''' # Demo of Music Segmentation(Intro, Verse, Outro..) using Change Detection Algoritm ''' ) result_list = gr.State() with gr.Column(): with gr.Row(): with gr.Column(): wavfile = gr.Audio(sources="upload", type="filepath") btn_submit = gr.Button() result_image = gr.Plot(label="result") with gr.Accordion(label="Settings", open=False): target_sampling_rate = gr.Number(label="target_sampling_rate", value=44100, interactive=True) hop_length_tempo = gr.Number(label="hop_length_tempo", value=512, interactive=True) n_bkps_max = gr.Number(label="n_bkps_max", value=10, interactive=True) result_len = gr.Number(label="result_len",value=10,interactive=False) RESULTS = [] with gr.Column(): for i in range(1,11): w = gr.Audio(label=f"result part {i}",visible=False,type="filepath") RESULTS.append(w) result_len.change(variable_outputs,result_len,RESULTS) # result_len.change(list_map,result_list,RESULTS) btn_submit.click( fn=generate, inputs=[ wavfile,target_sampling_rate,hop_length_tempo,n_bkps_max ], outputs=[ result_image,result_len,*RESULTS ], ) demo.queue().launch(server_name="0.0.0.0")