File size: 6,172 Bytes
138f509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import numpy as np
import cv2
import torch


# Dictionary utils
def _dict_merge(dicta, dictb, prefix=''):
    """

    Merge two dictionaries.

    """
    assert isinstance(dicta, dict), 'input must be a dictionary'
    assert isinstance(dictb, dict), 'input must be a dictionary'
    dict_ = {}
    all_keys = set(dicta.keys()).union(set(dictb.keys()))
    for key in all_keys:
        if key in dicta.keys() and key in dictb.keys():
            if isinstance(dicta[key], dict) and isinstance(dictb[key], dict):
                dict_[key] = _dict_merge(dicta[key], dictb[key], prefix=f'{prefix}.{key}')
            else:
                raise ValueError(f'Duplicate key {prefix}.{key} found in both dictionaries. Types: {type(dicta[key])}, {type(dictb[key])}')
        elif key in dicta.keys():
            dict_[key] = dicta[key]
        else:
            dict_[key] = dictb[key]
    return dict_


def dict_merge(dicta, dictb):
    """

    Merge two dictionaries.

    """
    return _dict_merge(dicta, dictb, prefix='')


def dict_foreach(dic, func, special_func={}):
    """

    Recursively apply a function to all non-dictionary leaf values in a dictionary.

    """
    assert isinstance(dic, dict), 'input must be a dictionary'
    for key in dic.keys():
        if isinstance(dic[key], dict):
            dic[key] = dict_foreach(dic[key], func)
        else:
            if key in special_func.keys():
                dic[key] = special_func[key](dic[key])
            else:
                dic[key] = func(dic[key])
    return dic


def dict_reduce(dicts, func, special_func={}):
    """

    Reduce a list of dictionaries. Leaf values must be scalars.

    """
    assert isinstance(dicts, list), 'input must be a list of dictionaries'
    assert all([isinstance(d, dict) for d in dicts]), 'input must be a list of dictionaries'
    assert len(dicts) > 0, 'input must be a non-empty list of dictionaries'
    all_keys = set([key for dict_ in dicts for key in dict_.keys()])
    reduced_dict = {}
    for key in all_keys:
        vlist = [dict_[key] for dict_ in dicts if key in dict_.keys()]
        if isinstance(vlist[0], dict):
            reduced_dict[key] = dict_reduce(vlist, func, special_func)
        else:
            if key in special_func.keys():
                reduced_dict[key] = special_func[key](vlist)
            else:
                reduced_dict[key] = func(vlist)
    return reduced_dict


def dict_any(dic, func):
    """

    Recursively apply a function to all non-dictionary leaf values in a dictionary.

    """
    assert isinstance(dic, dict), 'input must be a dictionary'
    for key in dic.keys():
        if isinstance(dic[key], dict):
            if dict_any(dic[key], func):
                return True
        else:
            if func(dic[key]):
                return True
    return False


def dict_all(dic, func):
    """

    Recursively apply a function to all non-dictionary leaf values in a dictionary.

    """
    assert isinstance(dic, dict), 'input must be a dictionary'
    for key in dic.keys():
        if isinstance(dic[key], dict):
            if not dict_all(dic[key], func):
                return False
        else:
            if not func(dic[key]):
                return False
    return True


def dict_flatten(dic, sep='.'):
    """

    Flatten a nested dictionary into a dictionary with no nested dictionaries.

    """
    assert isinstance(dic, dict), 'input must be a dictionary'
    flat_dict = {}
    for key in dic.keys():
        if isinstance(dic[key], dict):
            sub_dict = dict_flatten(dic[key], sep=sep)
            for sub_key in sub_dict.keys():
                flat_dict[str(key) + sep + str(sub_key)] = sub_dict[sub_key]
        else:
            flat_dict[key] = dic[key]
    return flat_dict


def make_grid(images, nrow=None, ncol=None, aspect_ratio=None):
    num_images = len(images)
    if nrow is None and ncol is None:
        if aspect_ratio is not None:
            nrow = int(np.round(np.sqrt(num_images / aspect_ratio)))
        else:
            nrow = int(np.sqrt(num_images))
        ncol = (num_images + nrow - 1) // nrow
    elif nrow is None and ncol is not None:
        nrow = (num_images + ncol - 1) // ncol
    elif nrow is not None and ncol is None:
        ncol = (num_images + nrow - 1) // nrow
    else:
        assert nrow * ncol >= num_images, 'nrow * ncol must be greater than or equal to the number of images'
        
    grid = np.zeros((nrow * images[0].shape[0], ncol * images[0].shape[1], images[0].shape[2]), dtype=images[0].dtype)
    for i, img in enumerate(images):
        row = i // ncol
        col = i % ncol
        grid[row * img.shape[0]:(row + 1) * img.shape[0], col * img.shape[1]:(col + 1) * img.shape[1]] = img
    return grid


def notes_on_image(img, notes=None):
    img = np.pad(img, ((0, 32), (0, 0), (0, 0)), 'constant', constant_values=0)
    img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
    if notes is not None:
        img = cv2.putText(img, notes, (0, img.shape[0] - 4), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return img


def save_image_with_notes(img, path, notes=None):
    """

    Save an image with notes.

    """
    if isinstance(img, torch.Tensor):
        img = img.cpu().numpy().transpose(1, 2, 0)
    if img.dtype == np.float32 or img.dtype == np.float64:
        img = np.clip(img * 255, 0, 255).astype(np.uint8)
    img = notes_on_image(img, notes)
    cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))


# debug utils

def atol(x, y):
    """

    Absolute tolerance.

    """
    return torch.abs(x - y)


def rtol(x, y):
    """

    Relative tolerance.

    """
    return torch.abs(x - y) / torch.clamp_min(torch.maximum(torch.abs(x), torch.abs(y)), 1e-12)


# print utils
def indent(s, n=4):
    """

    Indent a string.

    """
    lines = s.split('\n')
    for i in range(1, len(lines)):
        lines[i] = ' ' * n + lines[i]
    return '\n'.join(lines)