File size: 5,072 Bytes
138f509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from typing import *
import torch
import math
from . import DEBUG, BACKEND

if BACKEND == 'xformers':
    import xformers.ops as xops
elif BACKEND == 'flash_attn':
    import flash_attn
elif BACKEND == 'sdpa':
    from torch.nn.functional import scaled_dot_product_attention as sdpa
elif BACKEND == 'naive':
    pass
else:
    raise ValueError(f"Unknown attention backend: {BACKEND}")


__all__ = [
    'scaled_dot_product_attention',
]


def _naive_sdpa(q, k, v):
    """

    Naive implementation of scaled dot product attention.

    """
    q = q.permute(0, 2, 1, 3)   # [N, H, L, C]
    k = k.permute(0, 2, 1, 3)   # [N, H, L, C]
    v = v.permute(0, 2, 1, 3)   # [N, H, L, C]
    scale_factor = 1 / math.sqrt(q.size(-1))
    attn_weight = q @ k.transpose(-2, -1) * scale_factor
    attn_weight = torch.softmax(attn_weight, dim=-1)
    out = attn_weight @ v
    out = out.permute(0, 2, 1, 3)   # [N, L, H, C]
    return out


@overload
def scaled_dot_product_attention(qkv: torch.Tensor) -> torch.Tensor:
    """

    Apply scaled dot product attention.



    Args:

        qkv (torch.Tensor): A [N, L, 3, H, C] tensor containing Qs, Ks, and Vs.

    """
    ...

@overload
def scaled_dot_product_attention(q: torch.Tensor, kv: torch.Tensor) -> torch.Tensor:
    """

    Apply scaled dot product attention.



    Args:

        q (torch.Tensor): A [N, L, H, C] tensor containing Qs.

        kv (torch.Tensor): A [N, L, 2, H, C] tensor containing Ks and Vs.

    """
    ...

@overload
def scaled_dot_product_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
    """

    Apply scaled dot product attention.



    Args:

        q (torch.Tensor): A [N, L, H, Ci] tensor containing Qs.

        k (torch.Tensor): A [N, L, H, Ci] tensor containing Ks.

        v (torch.Tensor): A [N, L, H, Co] tensor containing Vs.



    Note:

        k and v are assumed to have the same coordinate map.

    """
    ...

def scaled_dot_product_attention(*args, **kwargs):
    arg_names_dict = {
        1: ['qkv'],
        2: ['q', 'kv'],
        3: ['q', 'k', 'v']
    }
    num_all_args = len(args) + len(kwargs)
    assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
    for key in arg_names_dict[num_all_args][len(args):]:
        assert key in kwargs, f"Missing argument {key}"

    if num_all_args == 1:
        qkv = args[0] if len(args) > 0 else kwargs['qkv']
        assert len(qkv.shape) == 5 and qkv.shape[2] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, L, 3, H, C]"
        device = qkv.device

    elif num_all_args == 2:
        q = args[0] if len(args) > 0 else kwargs['q']
        kv = args[1] if len(args) > 1 else kwargs['kv']
        assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
        assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
        assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
        device = q.device

    elif num_all_args == 3:
        q = args[0] if len(args) > 0 else kwargs['q']
        k = args[1] if len(args) > 1 else kwargs['k']
        v = args[2] if len(args) > 2 else kwargs['v']
        assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
        assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
        assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
        assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
        device = q.device    

    if BACKEND == 'xformers':
        if num_all_args == 1:
            q, k, v = qkv.unbind(dim=2)
        elif num_all_args == 2:
            k, v = kv.unbind(dim=2)
        out = xops.memory_efficient_attention(q, k, v)
    elif BACKEND == 'flash_attn':
        if num_all_args == 1:
            out = flash_attn.flash_attn_qkvpacked_func(qkv)
        elif num_all_args == 2:
            out = flash_attn.flash_attn_kvpacked_func(q, kv)
        elif num_all_args == 3:
            out = flash_attn.flash_attn_func(q, k, v)
    elif BACKEND == 'sdpa':
        if num_all_args == 1:
            q, k, v = qkv.unbind(dim=2)
        elif num_all_args == 2:
            k, v = kv.unbind(dim=2)
        q = q.permute(0, 2, 1, 3)   # [N, H, L, C]
        k = k.permute(0, 2, 1, 3)   # [N, H, L, C]
        v = v.permute(0, 2, 1, 3)   # [N, H, L, C]
        out = sdpa(q, k, v)         # [N, H, L, C]
        out = out.permute(0, 2, 1, 3)   # [N, L, H, C]
    elif BACKEND == 'naive':
        if num_all_args == 1:
            q, k, v = qkv.unbind(dim=2)
        elif num_all_args == 2:
            k, v = kv.unbind(dim=2)
        out = _naive_sdpa(q, k, v)
    else:
        raise ValueError(f"Unknown attention module: {BACKEND}")
    
    return out