Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,548 Bytes
138f509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from ..modules.utils import convert_module_to_f16, convert_module_to_f32
from ..modules.transformer import AbsolutePositionEmbedder, ModulatedTransformerCrossBlock
from ..modules.spatial import patchify, unpatchify
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
Args:
t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
dim: the dimension of the output.
max_period: controls the minimum frequency of the embeddings.
Returns:
an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class SparseStructureFlowModel(nn.Module):
def __init__(
self,
resolution: int,
in_channels: int,
model_channels: int,
cond_channels: int,
out_channels: int,
num_blocks: int,
num_heads: Optional[int] = None,
num_head_channels: Optional[int] = 64,
mlp_ratio: float = 4,
patch_size: int = 2,
pe_mode: Literal["ape", "rope"] = "ape",
use_fp16: bool = False,
use_checkpoint: bool = False,
share_mod: bool = False,
qk_rms_norm: bool = False,
qk_rms_norm_cross: bool = False,
):
super().__init__()
self.resolution = resolution
self.in_channels = in_channels
self.model_channels = model_channels
self.cond_channels = cond_channels
self.out_channels = out_channels
self.num_blocks = num_blocks
self.num_heads = num_heads or model_channels // num_head_channels
self.mlp_ratio = mlp_ratio
self.patch_size = patch_size
self.pe_mode = pe_mode
self.use_fp16 = use_fp16
self.use_checkpoint = use_checkpoint
self.share_mod = share_mod
self.qk_rms_norm = qk_rms_norm
self.qk_rms_norm_cross = qk_rms_norm_cross
self.dtype = torch.float16 if use_fp16 else torch.float32
self.t_embedder = TimestepEmbedder(model_channels)
if share_mod:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(model_channels, 6 * model_channels, bias=True)
)
if pe_mode == "ape":
pos_embedder = AbsolutePositionEmbedder(model_channels, 3)
coords = torch.meshgrid(*[torch.arange(res, device=self.device) for res in [resolution // patch_size] * 3], indexing='ij')
coords = torch.stack(coords, dim=-1).reshape(-1, 3)
pos_emb = pos_embedder(coords)
self.register_buffer("pos_emb", pos_emb)
self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels)
self.blocks = nn.ModuleList([
ModulatedTransformerCrossBlock(
model_channels,
cond_channels,
num_heads=self.num_heads,
mlp_ratio=self.mlp_ratio,
attn_mode='full',
use_checkpoint=self.use_checkpoint,
use_rope=(pe_mode == "rope"),
share_mod=share_mod,
qk_rms_norm=self.qk_rms_norm,
qk_rms_norm_cross=self.qk_rms_norm_cross,
)
for _ in range(num_blocks)
])
self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3)
self.initialize_weights()
if use_fp16:
self.convert_to_fp16()
@property
def device(self) -> torch.device:
"""
Return the device of the model.
"""
return next(self.parameters()).device
def convert_to_fp16(self) -> None:
"""
Convert the torso of the model to float16.
"""
self.blocks.apply(convert_module_to_f16)
def convert_to_fp32(self) -> None:
"""
Convert the torso of the model to float32.
"""
self.blocks.apply(convert_module_to_f32)
def initialize_weights(self) -> None:
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
if self.share_mod:
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
else:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.out_layer.weight, 0)
nn.init.constant_(self.out_layer.bias, 0)
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
assert [*x.shape] == [x.shape[0], self.in_channels, *[self.resolution] * 3], \
f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}"
h = patchify(x, self.patch_size)
h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous()
h = self.input_layer(h)
h = h + self.pos_emb[None]
t_emb = self.t_embedder(t)
if self.share_mod:
t_emb = self.adaLN_modulation(t_emb)
t_emb = t_emb.type(self.dtype)
h = h.type(self.dtype)
cond = cond.type(self.dtype)
for block in self.blocks:
h = block(h, t_emb, cond)
h = h.type(x.dtype)
h = F.layer_norm(h, h.shape[-1:])
h = self.out_layer(h)
h = h.permute(0, 2, 1).view(h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3)
h = unpatchify(h, self.patch_size).contiguous()
return h
|