File size: 4,050 Bytes
138f509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from ...modules import sparse as sp
from .base import SparseTransformerBase
from ...representations import Strivec


class SLatRadianceFieldDecoder(SparseTransformerBase):
    def __init__(

        self,

        resolution: int,

        model_channels: int,

        latent_channels: int,

        num_blocks: int,

        num_heads: Optional[int] = None,

        num_head_channels: Optional[int] = 64,

        mlp_ratio: float = 4,

        attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",

        window_size: int = 8,

        pe_mode: Literal["ape", "rope"] = "ape",

        use_fp16: bool = False,

        use_checkpoint: bool = False,

        qk_rms_norm: bool = False,

        representation_config: dict = None,

    ):
        super().__init__(
            in_channels=latent_channels,
            model_channels=model_channels,
            num_blocks=num_blocks,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            mlp_ratio=mlp_ratio,
            attn_mode=attn_mode,
            window_size=window_size,
            pe_mode=pe_mode,
            use_fp16=use_fp16,
            use_checkpoint=use_checkpoint,
            qk_rms_norm=qk_rms_norm,
        )
        self.resolution = resolution
        self.rep_config = representation_config
        self._calc_layout()
        self.out_layer = sp.SparseLinear(model_channels, self.out_channels)

        self.initialize_weights()
        if use_fp16:
            self.convert_to_fp16()

    def initialize_weights(self) -> None:
        super().initialize_weights()
        # Zero-out output layers:
        nn.init.constant_(self.out_layer.weight, 0)
        nn.init.constant_(self.out_layer.bias, 0)

    def _calc_layout(self) -> None:
        self.layout = {
            'trivec': {'shape': (self.rep_config['rank'], 3, self.rep_config['dim']), 'size': self.rep_config['rank'] * 3 * self.rep_config['dim']},
            'density': {'shape': (self.rep_config['rank'],), 'size': self.rep_config['rank']},
            'features_dc': {'shape': (self.rep_config['rank'], 1, 3), 'size': self.rep_config['rank'] * 3},
        }
        start = 0
        for k, v in self.layout.items():
            v['range'] = (start, start + v['size'])
            start += v['size']
        self.out_channels = start    
    
    def to_representation(self, x: sp.SparseTensor) -> List[Strivec]:
        """

        Convert a batch of network outputs to 3D representations.



        Args:

            x: The [N x * x C] sparse tensor output by the network.



        Returns:

            list of representations

        """
        ret = []
        for i in range(x.shape[0]):
            representation = Strivec(
                sh_degree=0,
                resolution=self.resolution,
                aabb=[-0.5, -0.5, -0.5, 1, 1, 1],
                rank=self.rep_config['rank'],
                dim=self.rep_config['dim'],
                device='cuda',
            )
            representation.density_shift = 0.0
            representation.position = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution
            representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(self.resolution)), dtype=torch.uint8, device='cuda')
            for k, v in self.layout.items():
                setattr(representation, k, x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']))
            representation.trivec = representation.trivec + 1
            ret.append(representation)
        return ret

    def forward(self, x: sp.SparseTensor) -> List[Strivec]:
        h = super().forward(x)
        h = h.type(x.dtype)
        h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
        h = self.out_layer(h)
        return self.to_representation(h)