Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,421 Bytes
138f509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
from typing import *
import torch
from .. import SparseTensor
from .. import DEBUG, ATTN
if ATTN == 'xformers':
import xformers.ops as xops
elif ATTN == 'flash_attn':
import flash_attn
else:
raise ValueError(f"Unknown attention module: {ATTN}")
__all__ = [
'sparse_scaled_dot_product_attention',
]
@overload
def sparse_scaled_dot_product_attention(qkv: SparseTensor) -> SparseTensor:
"""
Apply scaled dot product attention to a sparse tensor.
Args:
qkv (SparseTensor): A [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
"""
...
@overload
def sparse_scaled_dot_product_attention(q: SparseTensor, kv: Union[SparseTensor, torch.Tensor]) -> SparseTensor:
"""
Apply scaled dot product attention to a sparse tensor.
Args:
q (SparseTensor): A [N, *, H, C] sparse tensor containing Qs.
kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor or a [N, L, 2, H, C] dense tensor containing Ks and Vs.
"""
...
@overload
def sparse_scaled_dot_product_attention(q: torch.Tensor, kv: SparseTensor) -> torch.Tensor:
"""
Apply scaled dot product attention to a sparse tensor.
Args:
q (SparseTensor): A [N, L, H, C] dense tensor containing Qs.
kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor containing Ks and Vs.
"""
...
@overload
def sparse_scaled_dot_product_attention(q: SparseTensor, k: SparseTensor, v: SparseTensor) -> SparseTensor:
"""
Apply scaled dot product attention to a sparse tensor.
Args:
q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
Note:
k and v are assumed to have the same coordinate map.
"""
...
@overload
def sparse_scaled_dot_product_attention(q: SparseTensor, k: torch.Tensor, v: torch.Tensor) -> SparseTensor:
"""
Apply scaled dot product attention to a sparse tensor.
Args:
q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
k (torch.Tensor): A [N, L, H, Ci] dense tensor containing Ks.
v (torch.Tensor): A [N, L, H, Co] dense tensor containing Vs.
"""
...
@overload
def sparse_scaled_dot_product_attention(q: torch.Tensor, k: SparseTensor, v: SparseTensor) -> torch.Tensor:
"""
Apply scaled dot product attention to a sparse tensor.
Args:
q (torch.Tensor): A [N, L, H, Ci] dense tensor containing Qs.
k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
"""
...
def sparse_scaled_dot_product_attention(*args, **kwargs):
arg_names_dict = {
1: ['qkv'],
2: ['q', 'kv'],
3: ['q', 'k', 'v']
}
num_all_args = len(args) + len(kwargs)
assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
for key in arg_names_dict[num_all_args][len(args):]:
assert key in kwargs, f"Missing argument {key}"
if num_all_args == 1:
qkv = args[0] if len(args) > 0 else kwargs['qkv']
assert isinstance(qkv, SparseTensor), f"qkv must be a SparseTensor, got {type(qkv)}"
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
device = qkv.device
s = qkv
q_seqlen = [qkv.layout[i].stop - qkv.layout[i].start for i in range(qkv.shape[0])]
kv_seqlen = q_seqlen
qkv = qkv.feats # [T, 3, H, C]
elif num_all_args == 2:
q = args[0] if len(args) > 0 else kwargs['q']
kv = args[1] if len(args) > 1 else kwargs['kv']
assert isinstance(q, SparseTensor) and isinstance(kv, (SparseTensor, torch.Tensor)) or \
isinstance(q, torch.Tensor) and isinstance(kv, SparseTensor), \
f"Invalid types, got {type(q)} and {type(kv)}"
assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
device = q.device
if isinstance(q, SparseTensor):
assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, C]"
s = q
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
q = q.feats # [T_Q, H, C]
else:
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
s = None
N, L, H, C = q.shape
q_seqlen = [L] * N
q = q.reshape(N * L, H, C) # [T_Q, H, C]
if isinstance(kv, SparseTensor):
assert len(kv.shape) == 4 and kv.shape[1] == 2, f"Invalid shape for kv, got {kv.shape}, expected [N, *, 2, H, C]"
kv_seqlen = [kv.layout[i].stop - kv.layout[i].start for i in range(kv.shape[0])]
kv = kv.feats # [T_KV, 2, H, C]
else:
assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
N, L, _, H, C = kv.shape
kv_seqlen = [L] * N
kv = kv.reshape(N * L, 2, H, C) # [T_KV, 2, H, C]
elif num_all_args == 3:
q = args[0] if len(args) > 0 else kwargs['q']
k = args[1] if len(args) > 1 else kwargs['k']
v = args[2] if len(args) > 2 else kwargs['v']
assert isinstance(q, SparseTensor) and isinstance(k, (SparseTensor, torch.Tensor)) and type(k) == type(v) or \
isinstance(q, torch.Tensor) and isinstance(k, SparseTensor) and isinstance(v, SparseTensor), \
f"Invalid types, got {type(q)}, {type(k)}, and {type(v)}"
assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
device = q.device
if isinstance(q, SparseTensor):
assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, Ci]"
s = q
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
q = q.feats # [T_Q, H, Ci]
else:
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
s = None
N, L, H, CI = q.shape
q_seqlen = [L] * N
q = q.reshape(N * L, H, CI) # [T_Q, H, Ci]
if isinstance(k, SparseTensor):
assert len(k.shape) == 3, f"Invalid shape for k, got {k.shape}, expected [N, *, H, Ci]"
assert len(v.shape) == 3, f"Invalid shape for v, got {v.shape}, expected [N, *, H, Co]"
kv_seqlen = [k.layout[i].stop - k.layout[i].start for i in range(k.shape[0])]
k = k.feats # [T_KV, H, Ci]
v = v.feats # [T_KV, H, Co]
else:
assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
N, L, H, CI, CO = *k.shape, v.shape[-1]
kv_seqlen = [L] * N
k = k.reshape(N * L, H, CI) # [T_KV, H, Ci]
v = v.reshape(N * L, H, CO) # [T_KV, H, Co]
if DEBUG:
if s is not None:
for i in range(s.shape[0]):
assert (s.coords[s.layout[i]] == i).all(), f"SparseScaledDotProductSelfAttention: batch index mismatch"
if num_all_args in [2, 3]:
assert q.shape[:2] == [1, sum(q_seqlen)], f"SparseScaledDotProductSelfAttention: q shape mismatch"
if num_all_args == 3:
assert k.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: k shape mismatch"
assert v.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: v shape mismatch"
if ATTN == 'xformers':
if num_all_args == 1:
q, k, v = qkv.unbind(dim=1)
elif num_all_args == 2:
k, v = kv.unbind(dim=1)
q = q.unsqueeze(0)
k = k.unsqueeze(0)
v = v.unsqueeze(0)
mask = xops.fmha.BlockDiagonalMask.from_seqlens(q_seqlen, kv_seqlen)
out = xops.memory_efficient_attention(q, k, v, mask)[0]
elif ATTN == 'flash_attn':
cu_seqlens_q = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(q_seqlen), dim=0)]).int().to(device)
if num_all_args in [2, 3]:
cu_seqlens_kv = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(kv_seqlen), dim=0)]).int().to(device)
if num_all_args == 1:
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens_q, max(q_seqlen))
elif num_all_args == 2:
out = flash_attn.flash_attn_varlen_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
elif num_all_args == 3:
out = flash_attn.flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
else:
raise ValueError(f"Unknown attention module: {ATTN}")
if s is not None:
return s.replace(out)
else:
return out.reshape(N, L, H, -1)
|