Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,242 Bytes
138f509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
from .. import SparseTensor
from .full_attn import sparse_scaled_dot_product_attention
from .serialized_attn import SerializeMode, sparse_serialized_scaled_dot_product_self_attention
from .windowed_attn import sparse_windowed_scaled_dot_product_self_attention
from ...attention import RotaryPositionEmbedder
class SparseMultiHeadRMSNorm(nn.Module):
def __init__(self, dim: int, heads: int):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(heads, dim))
def forward(self, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]:
x_type = x.dtype
x = x.float()
if isinstance(x, SparseTensor):
x = x.replace(F.normalize(x.feats, dim=-1))
else:
x = F.normalize(x, dim=-1)
return (x * self.gamma * self.scale).to(x_type)
class SparseMultiHeadAttention(nn.Module):
def __init__(
self,
channels: int,
num_heads: int,
ctx_channels: Optional[int] = None,
type: Literal["self", "cross"] = "self",
attn_mode: Literal["full", "serialized", "windowed"] = "full",
window_size: Optional[int] = None,
shift_sequence: Optional[int] = None,
shift_window: Optional[Tuple[int, int, int]] = None,
serialize_mode: Optional[SerializeMode] = None,
qkv_bias: bool = True,
use_rope: bool = False,
qk_rms_norm: bool = False,
):
super().__init__()
assert channels % num_heads == 0
assert type in ["self", "cross"], f"Invalid attention type: {type}"
assert attn_mode in ["full", "serialized", "windowed"], f"Invalid attention mode: {attn_mode}"
assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention"
assert type == "self" or use_rope is False, "Rotary position embeddings only supported for self-attention"
self.channels = channels
self.ctx_channels = ctx_channels if ctx_channels is not None else channels
self.num_heads = num_heads
self._type = type
self.attn_mode = attn_mode
self.window_size = window_size
self.shift_sequence = shift_sequence
self.shift_window = shift_window
self.serialize_mode = serialize_mode
self.use_rope = use_rope
self.qk_rms_norm = qk_rms_norm
if self._type == "self":
self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias)
else:
self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
if self.qk_rms_norm:
self.q_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
self.k_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
self.to_out = nn.Linear(channels, channels)
if use_rope:
self.rope = RotaryPositionEmbedder(channels)
@staticmethod
def _linear(module: nn.Linear, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]:
if isinstance(x, SparseTensor):
return x.replace(module(x.feats))
else:
return module(x)
@staticmethod
def _reshape_chs(x: Union[SparseTensor, torch.Tensor], shape: Tuple[int, ...]) -> Union[SparseTensor, torch.Tensor]:
if isinstance(x, SparseTensor):
return x.reshape(*shape)
else:
return x.reshape(*x.shape[:2], *shape)
def _fused_pre(self, x: Union[SparseTensor, torch.Tensor], num_fused: int) -> Union[SparseTensor, torch.Tensor]:
if isinstance(x, SparseTensor):
x_feats = x.feats.unsqueeze(0)
else:
x_feats = x
x_feats = x_feats.reshape(*x_feats.shape[:2], num_fused, self.num_heads, -1)
return x.replace(x_feats.squeeze(0)) if isinstance(x, SparseTensor) else x_feats
def _rope(self, qkv: SparseTensor) -> SparseTensor:
q, k, v = qkv.feats.unbind(dim=1) # [T, H, C]
q, k = self.rope(q, k, qkv.coords[:, 1:])
qkv = qkv.replace(torch.stack([q, k, v], dim=1))
return qkv
def forward(self, x: Union[SparseTensor, torch.Tensor], context: Optional[Union[SparseTensor, torch.Tensor]] = None) -> Union[SparseTensor, torch.Tensor]:
if self._type == "self":
qkv = self._linear(self.to_qkv, x)
qkv = self._fused_pre(qkv, num_fused=3)
if self.use_rope:
qkv = self._rope(qkv)
if self.qk_rms_norm:
q, k, v = qkv.unbind(dim=1)
q = self.q_rms_norm(q)
k = self.k_rms_norm(k)
qkv = qkv.replace(torch.stack([q.feats, k.feats, v.feats], dim=1))
if self.attn_mode == "full":
h = sparse_scaled_dot_product_attention(qkv)
elif self.attn_mode == "serialized":
h = sparse_serialized_scaled_dot_product_self_attention(
qkv, self.window_size, serialize_mode=self.serialize_mode, shift_sequence=self.shift_sequence, shift_window=self.shift_window
)
elif self.attn_mode == "windowed":
h = sparse_windowed_scaled_dot_product_self_attention(
qkv, self.window_size, shift_window=self.shift_window
)
else:
q = self._linear(self.to_q, x)
q = self._reshape_chs(q, (self.num_heads, -1))
kv = self._linear(self.to_kv, context)
kv = self._fused_pre(kv, num_fused=2)
if self.qk_rms_norm:
q = self.q_rms_norm(q)
k, v = kv.unbind(dim=1)
k = self.k_rms_norm(k)
kv = kv.replace(torch.stack([k.feats, v.feats], dim=1))
h = sparse_scaled_dot_product_attention(q, kv)
h = self._reshape_chs(h, (-1,))
h = self._linear(self.to_out, h)
return h
|