Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,812 Bytes
138f509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
from typing import *
import torch
import torch.nn as nn
from .. import models
class Pipeline:
"""
A base class for pipelines.
"""
def __init__(
self,
models: dict[str, nn.Module] = None,
):
if models is None:
return
self.models = models
for model in self.models.values():
model.eval()
@staticmethod
def from_pretrained(path: str) -> "Pipeline":
"""
Load a pretrained model.
"""
import os
import json
is_local = os.path.exists(f"{path}/pipeline.json")
if is_local:
config_file = f"{path}/pipeline.json"
else:
from huggingface_hub import hf_hub_download
config_file = hf_hub_download(path, "pipeline.json")
with open(config_file, 'r') as f:
args = json.load(f)['args']
_models = {
k: models.from_pretrained(f"{path}/{v}")
for k, v in args['models'].items()
}
new_pipeline = Pipeline(_models)
new_pipeline._pretrained_args = args
return new_pipeline
@property
def device(self) -> torch.device:
for model in self.models.values():
if hasattr(model, 'device'):
return model.device
for model in self.models.values():
if hasattr(model, 'parameters'):
return next(model.parameters()).device
raise RuntimeError("No device found.")
def to(self, device: torch.device) -> None:
for model in self.models.values():
model.to(device)
def cuda(self) -> None:
self.to(torch.device("cuda"))
def cpu(self) -> None:
self.to(torch.device("cpu"))
|