File size: 4,449 Bytes
138f509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from typing import *
import torch
import torch.nn as nn
from ...modules.utils import convert_module_to_f16, convert_module_to_f32
from ...modules import sparse as sp
from ...modules.transformer import AbsolutePositionEmbedder
from ...modules.sparse.transformer import SparseTransformerBlock


def block_attn_config(self):
    """

    Return the attention configuration of the model.

    """
    for i in range(self.num_blocks):
        if self.attn_mode == "shift_window":
            yield "serialized", self.window_size, 0, (16 * (i % 2),) * 3, sp.SerializeMode.Z_ORDER
        elif self.attn_mode == "shift_sequence":
            yield "serialized", self.window_size, self.window_size // 2 * (i % 2), (0, 0, 0), sp.SerializeMode.Z_ORDER
        elif self.attn_mode == "shift_order":
            yield "serialized", self.window_size, 0, (0, 0, 0), sp.SerializeModes[i % 4]
        elif self.attn_mode == "full":
            yield "full", None, None, None, None
        elif self.attn_mode == "swin":
            yield "windowed", self.window_size, None, self.window_size // 2 * (i % 2), None


class SparseTransformerBase(nn.Module):
    """

    Sparse Transformer without output layers.

    Serve as the base class for encoder and decoder.

    """
    def __init__(

        self,

        in_channels: int,

        model_channels: int,

        num_blocks: int,

        num_heads: Optional[int] = None,

        num_head_channels: Optional[int] = 64,

        mlp_ratio: float = 4.0,

        attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",

        window_size: Optional[int] = None,

        pe_mode: Literal["ape", "rope"] = "ape",

        use_fp16: bool = False,

        use_checkpoint: bool = False,

        qk_rms_norm: bool = False,

    ):
        super().__init__()
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.num_blocks = num_blocks
        self.window_size = window_size
        self.num_heads = num_heads or model_channels // num_head_channels
        self.mlp_ratio = mlp_ratio
        self.attn_mode = attn_mode
        self.pe_mode = pe_mode
        self.use_fp16 = use_fp16
        self.use_checkpoint = use_checkpoint
        self.qk_rms_norm = qk_rms_norm
        self.dtype = torch.float16 if use_fp16 else torch.float32

        if pe_mode == "ape":
            self.pos_embedder = AbsolutePositionEmbedder(model_channels)

        self.input_layer = sp.SparseLinear(in_channels, model_channels)
        self.blocks = nn.ModuleList([
            SparseTransformerBlock(
                model_channels,
                num_heads=self.num_heads,
                mlp_ratio=self.mlp_ratio,
                attn_mode=attn_mode,
                window_size=window_size,
                shift_sequence=shift_sequence,
                shift_window=shift_window,
                serialize_mode=serialize_mode,
                use_checkpoint=self.use_checkpoint,
                use_rope=(pe_mode == "rope"),
                qk_rms_norm=self.qk_rms_norm,
            )
            for attn_mode, window_size, shift_sequence, shift_window, serialize_mode in block_attn_config(self)
        ])

    @property
    def device(self) -> torch.device:
        """

        Return the device of the model.

        """
        return next(self.parameters()).device

    def convert_to_fp16(self) -> None:
        """

        Convert the torso of the model to float16.

        """
        self.blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self) -> None:
        """

        Convert the torso of the model to float32.

        """
        self.blocks.apply(convert_module_to_f32)

    def initialize_weights(self) -> None:
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

    def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
        h = self.input_layer(x)
        if self.pe_mode == "ape":
            h = h + self.pos_embedder(x.coords[:, 1:])
        h = h.type(self.dtype)
        for block in self.blocks:
            h = block(h)
        return h