File size: 5,953 Bytes
138f509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
import nvdiffrast.torch as dr
from easydict import EasyDict as edict
from ..representations.mesh import MeshExtractResult
import torch.nn.functional as F


def intrinsics_to_projection(

        intrinsics: torch.Tensor,

        near: float,

        far: float,

    ) -> torch.Tensor:
    """

    OpenCV intrinsics to OpenGL perspective matrix



    Args:

        intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix

        near (float): near plane to clip

        far (float): far plane to clip

    Returns:

        (torch.Tensor): [4, 4] OpenGL perspective matrix

    """
    fx, fy = intrinsics[0, 0], intrinsics[1, 1]
    cx, cy = intrinsics[0, 2], intrinsics[1, 2]
    ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
    ret[0, 0] = 2 * fx
    ret[1, 1] = 2 * fy
    ret[0, 2] = 2 * cx - 1
    ret[1, 2] = - 2 * cy + 1
    ret[2, 2] = far / (far - near)
    ret[2, 3] = near * far / (near - far)
    ret[3, 2] = 1.
    return ret


class MeshRenderer:
    """

    Renderer for the Mesh representation.



    Args:

        rendering_options (dict): Rendering options.

        glctx (nvdiffrast.torch.RasterizeGLContext): RasterizeGLContext object for CUDA/OpenGL interop.

        """
    def __init__(self, rendering_options={}, device='cuda'):
        self.rendering_options = edict({
            "resolution": None,
            "near": None,
            "far": None,
            "ssaa": 1
        })
        self.rendering_options.update(rendering_options)
        self.glctx = dr.RasterizeCudaContext(device=device)
        self.device=device
        
    def render(

            self,

            mesh : MeshExtractResult,

            extrinsics: torch.Tensor,

            intrinsics: torch.Tensor,

            return_types = ["mask", "normal", "depth"]

        ) -> edict:
        """

        Render the mesh.



        Args:

            mesh : meshmodel

            extrinsics (torch.Tensor): (4, 4) camera extrinsics

            intrinsics (torch.Tensor): (3, 3) camera intrinsics

            return_types (list): list of return types, can be "mask", "depth", "normal_map", "normal", "color"



        Returns:

            edict based on return_types containing:

                color (torch.Tensor): [3, H, W] rendered color image

                depth (torch.Tensor): [H, W] rendered depth image

                normal (torch.Tensor): [3, H, W] rendered normal image

                normal_map (torch.Tensor): [3, H, W] rendered normal map image

                mask (torch.Tensor): [H, W] rendered mask image

        """
        resolution = self.rendering_options["resolution"]
        near = self.rendering_options["near"]
        far = self.rendering_options["far"]
        ssaa = self.rendering_options["ssaa"]
        
        if mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
            default_img = torch.zeros((1, resolution, resolution, 3), dtype=torch.float32, device=self.device)
            ret_dict = {k : default_img if k in ['normal', 'normal_map', 'color'] else default_img[..., :1] for k in return_types}
            return ret_dict
        
        perspective = intrinsics_to_projection(intrinsics, near, far)
        
        RT = extrinsics.unsqueeze(0)
        full_proj = (perspective @ extrinsics).unsqueeze(0)
        
        vertices = mesh.vertices.unsqueeze(0)

        vertices_homo = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1)
        vertices_camera = torch.bmm(vertices_homo, RT.transpose(-1, -2))
        vertices_clip = torch.bmm(vertices_homo, full_proj.transpose(-1, -2))
        faces_int = mesh.faces.int()
        rast, _ = dr.rasterize(
            self.glctx, vertices_clip, faces_int, (resolution * ssaa, resolution * ssaa))
        
        out_dict = edict()
        for type in return_types:
            img = None
            if type == "mask" :
                img = dr.antialias((rast[..., -1:] > 0).float(), rast, vertices_clip, faces_int)
            elif type == "depth":
                img = dr.interpolate(vertices_camera[..., 2:3].contiguous(), rast, faces_int)[0]
                img = dr.antialias(img, rast, vertices_clip, faces_int)
            elif type == "normal" :
                img = dr.interpolate(
                    mesh.face_normal.reshape(1, -1, 3), rast,
                    torch.arange(mesh.faces.shape[0] * 3, device=self.device, dtype=torch.int).reshape(-1, 3)
                )[0]
                img = dr.antialias(img, rast, vertices_clip, faces_int)
                # normalize norm pictures
                img = (img + 1) / 2
            elif type == "normal_map" :
                img = dr.interpolate(mesh.vertex_attrs[:, 3:].contiguous(), rast, faces_int)[0]
                img = dr.antialias(img, rast, vertices_clip, faces_int)
            elif type == "color" :
                img = dr.interpolate(mesh.vertex_attrs[:, :3].contiguous(), rast, faces_int)[0]
                img = dr.antialias(img, rast, vertices_clip, faces_int)

            if ssaa > 1:
                img = F.interpolate(img.permute(0, 3, 1, 2), (resolution, resolution), mode='bilinear', align_corners=False, antialias=True)
                img = img.squeeze()
            else:
                img = img.permute(0, 3, 1, 2).squeeze()
            out_dict[type] = img

        return out_dict