gokaygokay commited on
Commit
27a3da9
·
verified ·
1 Parent(s): 515e32c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -4
app.py CHANGED
@@ -92,7 +92,6 @@ def generate_flux_image(
92
  height: int,
93
  guidance_scale: float,
94
  num_inference_steps: int,
95
- lora_scale: float,
96
  progress: gr.Progress = gr.Progress(track_tqdm=True),
97
  ) -> Image.Image:
98
  """Generate image using Flux pipeline"""
@@ -107,7 +106,6 @@ def generate_flux_image(
107
  width=width,
108
  height=height,
109
  generator=generator,
110
- joint_attention_kwargs={"scale": lora_scale},
111
  ).images[0]
112
 
113
  # Save the generated image
@@ -199,7 +197,6 @@ with gr.Blocks() as demo:
199
  with gr.Row():
200
  guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
201
  num_inference_steps = gr.Slider(1, 50, label="Steps", value=30, step=1)
202
- lora_scale = gr.Slider(0.0, 1.0, label="LoRA Scale", value=1.0, step=0.1)
203
 
204
  with gr.Accordion("3D Generation Settings", open=False):
205
  gr.Markdown("Stage 1: Sparse Structure Generation")
@@ -241,7 +238,7 @@ with gr.Blocks() as demo:
241
 
242
  generate_btn.click(
243
  generate_flux_image,
244
- inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale],
245
  outputs=[generated_image],
246
  ).then(
247
  image_to_3d,
 
92
  height: int,
93
  guidance_scale: float,
94
  num_inference_steps: int,
 
95
  progress: gr.Progress = gr.Progress(track_tqdm=True),
96
  ) -> Image.Image:
97
  """Generate image using Flux pipeline"""
 
106
  width=width,
107
  height=height,
108
  generator=generator,
 
109
  ).images[0]
110
 
111
  # Save the generated image
 
197
  with gr.Row():
198
  guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
199
  num_inference_steps = gr.Slider(1, 50, label="Steps", value=30, step=1)
 
200
 
201
  with gr.Accordion("3D Generation Settings", open=False):
202
  gr.Markdown("Stage 1: Sparse Structure Generation")
 
238
 
239
  generate_btn.click(
240
  generate_flux_image,
241
+ inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
242
  outputs=[generated_image],
243
  ).then(
244
  image_to_3d,