Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor | |
import spaces | |
import torch | |
model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner", device="cuda").eval() | |
processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner") | |
def create_captions_rich(image): | |
prompt = "caption en" | |
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") | |
input_len = model_inputs["input_ids"].shape[-1] | |
with torch.inference_mode(): | |
generation = model.generate(**model_inputs, max_new_tokens=256, do_sample=False) | |
generation = generation[0][input_len:] | |
decoded = processor.decode(generation, skip_special_tokens=True) | |
return decoded | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1><center>PaliGemma Fine-tuned for Long Captioning for Stable Diffusion 3.<center><h1>") | |
with gr.Tab(label="PaliGemma Rich Captions"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture") | |
submit_btn = gr.Button(value="Submit") | |
output = gr.Text(label="Caption") | |
gr.Examples( | |
[["assets/image1.png"], ["assets/image2.PNG"], ["assets/image3.jpg"]], | |
inputs = [input_img], | |
outputs = [output], | |
fn=create_captions_rich, | |
label='Try captioning on examples' | |
) | |
submit_btn.click(create_captions_rich, [input_img], [output]) | |
demo.launch(debug=True) |