Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor | |
import spaces | |
import torch | |
model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner").to("cuda").eval() | |
processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner") | |
import re | |
def modify_caption(caption: str) -> str: | |
""" | |
Removes specific prefixes from captions. | |
Args: | |
caption (str): A string containing a caption. | |
Returns: | |
str: The caption with the prefix removed if it was present. | |
""" | |
# Define the prefixes to remove | |
prefix_substrings = [ | |
('captured from ', ''), | |
('captured at ', '') | |
] | |
# Create a regex pattern to match any of the prefixes | |
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings]) | |
replacers = {opening: replacer for opening, replacer in prefix_substrings} | |
# Function to replace matched prefix with its corresponding replacement | |
def replace_fn(match): | |
return replacers[match.group(0)] | |
# Apply the regex to the caption | |
return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE) | |
# Example usage in your existing function | |
def create_captions_rich(image): | |
prompt = "caption en" | |
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") | |
input_len = model_inputs["input_ids"].shape[-1] | |
with torch.inference_mode(): | |
generation = model.generate(**model_inputs, max_new_tokens=256, do_sample=False) | |
generation = generation[0][input_len:] | |
decoded = processor.decode(generation, skip_special_tokens=True) | |
# Modify the caption to remove specific prefixes | |
modified_caption = modify_caption(decoded) | |
return modified_caption | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1><center>PaliGemma Fine-tuned for Long Captioning for Stable Diffusion 3<center><h1>") | |
with gr.Tab(label="PaliGemma Long Captioner"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture") | |
submit_btn = gr.Button(value="Submit") | |
output = gr.Text(label="Caption") | |
gr.Examples( | |
[["image1.jpg"], ["image2.jpg"], ["image3.png"], ["image4.jpg"], ["image5.jpg"], ["image6.PNG"]], | |
inputs = [input_img], | |
outputs = [output], | |
fn=create_captions_rich, | |
label='Try captioning on examples' | |
) | |
submit_btn.click(create_captions_rich, [input_img], [output]) | |
demo.launch(debug=True) |