RVC-TTS / lib /infer_pack /transforms.py
golem4300's picture
Duplicate from ImPavloh/RVC-TTS-Demo
0ce8c7d
raw
history blame
7.17 kB
import torch
from torch.nn import functional as F
import numpy as np
DEFAULT_MIN_BIN_WIDTH = 1e-3
DEFAULT_MIN_BIN_HEIGHT = 1e-3
DEFAULT_MIN_DERIVATIVE = 1e-3
def piecewise_rational_quadratic_transform(inputs, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=False, tails=None, tail_bound=1.0, min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE):
if tails is None:
spline_fn = rational_quadratic_spline
spline_kwargs = {}
else:
spline_fn = unconstrained_rational_quadratic_spline
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
return spline_fn(inputs=inputs, unnormalized_widths=unnormalized_widths, unnormalized_heights=unnormalized_heights, unnormalized_derivatives=unnormalized_derivatives, inverse=inverse, min_bin_width=min_bin_width, min_bin_height=min_bin_height, min_derivative=min_derivative, **spline_kwargs)
def searchsorted(bin_locations, inputs, eps=1e-6):
bin_locations[..., -1] += eps
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
def unconstrained_rational_quadratic_spline(inputs, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=False, tails="linear", tail_bound=1.0, min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE):
if tails != "linear": raise RuntimeError(f"{tails} tails are not implemented.")
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
constant = np.log(np.exp(1 - min_derivative) - 1)
unnormalized_derivatives[..., 0] = constant
unnormalized_derivatives[..., -1] = constant
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
outside_interval_mask = ~inside_interval_mask
outputs = torch.where(outside_interval_mask, inputs, torch.zeros_like(inputs))
logabsdet = torch.zeros_like(inputs)
inside_outputs, inside_logabsdet = rational_quadratic_spline(
inputs=inputs[inside_interval_mask],
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
inverse=inverse, left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
min_bin_width=min_bin_width, min_bin_height=min_bin_height, min_derivative=min_derivative)
outputs[inside_interval_mask] = inside_outputs
logabsdet[inside_interval_mask] = inside_logabsdet
return outputs, logabsdet
def rational_quadratic_spline(inputs, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=False, left=0.0, right=1.0, bottom=0.0, top=1.0, min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE):
num_bins = unnormalized_widths.shape[-1]
if min_bin_width * num_bins > 1.0: raise ValueError("Minimal bin width too large for the number of bins")
if min_bin_height * num_bins > 1.0: raise ValueError("Minimal bin height too large for the number of bins")
widths, heights = compute_widths_and_heights(unnormalized_widths, unnormalized_heights, min_bin_width, min_bin_height, num_bins, left, right, bottom, top)
cumwidths, cumheights = widths.cumsum(dim=-1), heights.cumsum(dim=-1)
cumwidths[..., 0] = left
cumwidths[..., -1] = right
cumheights[..., 0] = bottom
cumheights[..., -1] = top
widths, heights = cumwidths[..., 1:] - cumwidths[..., :-1], cumheights[..., 1:] - cumheights[..., :-1]
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
if inverse: bin_idx = searchsorted(cumheights, inputs)[..., None]
else: bin_idx = searchsorted(cumwidths, inputs)[..., None]
gather_args = (-1, bin_idx)
input_cumwidths, input_bin_widths, input_cumheights, input_delta, input_derivatives, input_derivatives_plus_one, input_heights = map(
lambda tensor: tensor.gather(*gather_args)[..., 0],
(cumwidths, widths, cumheights, heights / widths, derivatives, derivatives[..., 1:], heights))
if inverse: outputs, logabsdet = inverse_rational_quadratic_spline(inputs, input_cumheights, input_heights, input_derivatives, input_derivatives_plus_one, input_delta, input_bin_widths, input_cumwidths)
else: outputs, logabsdet = direct_rational_quadratic_spline(inputs, input_cumwidths, input_bin_widths, input_cumheights, input_heights, input_derivatives, input_derivatives_plus_one, input_delta)
return outputs, logabsdet
def compute_widths_and_heights(unnormalized_widths, unnormalized_heights, min_bin_width, min_bin_height, num_bins, left, right, bottom, top):
widths = F.softmax(unnormalized_widths, dim=-1)
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
widths = (right - left) * widths + left
heights = F.softmax(unnormalized_heights, dim=-1)
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
heights = (top - bottom) * heights + bottom
return widths, heights
def inverse_rational_quadratic_spline(inputs, input_cumheights, input_heights, input_derivatives, input_derivatives_plus_one, input_delta, input_bin_widths, input_cumwidths):
a = (inputs - input_cumheights) * (input_derivatives + input_derivatives_plus_one - 2 * input_delta) + input_heights * (input_delta - input_derivatives)
b = input_heights * input_derivatives - (inputs - input_cumheights) * (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
c = -input_delta * (inputs - input_cumheights)
discriminant = b.pow(2) - 4 * a * c
assert (discriminant >= 0).all()
root = (2 * c) / (-b - torch.sqrt(discriminant))
outputs = root * input_bin_widths + input_cumwidths
theta_one_minus_theta = root * (1 - root)
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)* theta_one_minus_theta)
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)+ 2 * input_delta * theta_one_minus_theta+ input_derivatives * (1 - root).pow(2))
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, -logabsdet
def direct_rational_quadratic_spline(inputs, input_cumwidths, input_bin_widths, input_cumheights, input_heights, input_derivatives, input_derivatives_plus_one, input_delta):
theta = (inputs - input_cumwidths) / input_bin_widths
theta_one_minus_theta = theta * (1 - theta)
numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta)
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta)
outputs = input_cumheights + numerator / denominator
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - theta).pow(2))
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, logabsdet