|
from scipy import signal |
|
from functools import lru_cache |
|
import torch.nn.functional as F |
|
import numpy as np, parselmouth, torch |
|
import pyworld, os, traceback, faiss, librosa |
|
|
|
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000) |
|
|
|
@lru_cache |
|
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period, input_audio_path2wav): |
|
audio = input_audio_path2wav[input_audio_path] |
|
f0, t = pyworld.harvest( |
|
audio, fs=fs, f0_ceil=f0max, f0_floor=f0min, frame_period=frame_period |
|
) |
|
f0 = pyworld.stonemask(audio, f0, t, fs) |
|
return f0 |
|
|
|
def change_rms(data1, sr1, data2, sr2, rate): |
|
rms1 = librosa.feature.rms(y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2) |
|
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2) |
|
rms1 = torch.from_numpy(rms1).unsqueeze(0) |
|
rms2 = torch.from_numpy(rms2).unsqueeze(0) |
|
rms1 = F.interpolate(rms1, size=data2.shape[0], mode="linear").squeeze() |
|
rms2 = F.interpolate(rms2, size=data2.shape[0], mode="linear").squeeze() |
|
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6) |
|
data2 *= (torch.pow(rms1, 1 - rate) * torch.pow(rms2, rate - 1)).numpy() |
|
|
|
return data2 |
|
|
|
class VC: |
|
def __init__(self, tgt_sr, config): |
|
self.x_pad = config.x_pad |
|
self.x_query = config.x_query |
|
self.x_center = config.x_center |
|
self.x_max = config.x_max |
|
self.is_half = config.is_half |
|
self.sr = 16000 |
|
self.window = 160 |
|
self.t_pad = self.sr * self.x_pad |
|
self.t_pad_tgt = tgt_sr * self.x_pad |
|
self.t_pad2 = self.t_pad * 2 |
|
self.t_query = self.sr * self.x_query |
|
self.t_center = self.sr * self.x_center |
|
self.t_max = self.sr * self.x_max |
|
self.device = config.device |
|
|
|
def get_f0(self, input_audio_path, x, p_len, f0_up_key, f0_method, filter_radius, inp_f0=None): |
|
global input_audio_path2wav |
|
time_step = self.window / self.sr * 1000 |
|
f0_min = 50 |
|
f0_max = 1100 |
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700) |
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700) |
|
|
|
if f0_method == "pm": |
|
f0 = (parselmouth.Sound(x, self.sr) |
|
.to_pitch_ac(time_step=time_step / 1000, voicing_threshold=0.6, pitch_floor=f0_min, |
|
pitch_ceiling=f0_max,) |
|
.selected_array["frequency"]) |
|
pad_size = (p_len - len(f0) + 1) // 2 |
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0: |
|
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant") |
|
f0 *= pow(2, f0_up_key / 12) |
|
tf0 = self.sr // self.window |
|
|
|
if inp_f0 is not None: |
|
delta_t = np.round( |
|
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1 |
|
).astype("int16") |
|
replace_f0 = np.interp(list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]) |
|
shape = f0[self.x_pad * tf0: self.x_pad * tf0 + len(replace_f0)].shape[0] |
|
f0[self.x_pad * tf0: self.x_pad * tf0 + len(replace_f0)] = replace_f0[:shape] |
|
|
|
f0bak= f0.copy() |
|
f0_mel = 1127 * np.log(1 + f0 / 700) |
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1 |
|
f0_mel[f0_mel <= 1] = 1 |
|
f0_mel[f0_mel > 255] = 255 |
|
f0_coarse = np.rint(f0_mel).astype(np.int) |
|
return f0_coarse, f0bak |
|
|
|
def vc(self, model, net_g, sid, audio0, pitch, pitchf, times, index, big_npy, index_rate, version, protect): |
|
feats = torch.from_numpy(audio0) |
|
feats = feats.half() if self.is_half else feats.float() |
|
|
|
if feats.dim() == 2: |
|
feats = feats.mean(-1) |
|
assert feats.dim() == 1, feats.dim() |
|
feats = feats.view(1, -1) |
|
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) |
|
|
|
inputs = { "source": feats.to(self.device), "padding_mask": padding_mask, "output_layer": 9 if version == "v1" else 12} |
|
|
|
with torch.no_grad(): |
|
logits = model.extract_features(**inputs) |
|
feats = model.final_proj(logits[0]) if version == "v1" else logits[0] |
|
|
|
if protect < 0.5 and pitch is not None and pitchf is not None: |
|
feats0 = feats.clone() |
|
|
|
if index is not None and big_npy is not None and index_rate != 0: |
|
npy = feats[0].cpu().numpy() |
|
if self.is_half: |
|
npy = npy.astype("float64") |
|
|
|
score, ix = index.search(npy, k=8) |
|
weight = np.square(1 / score) |
|
weight /= weight.sum(axis=1, keepdims=True) |
|
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) |
|
|
|
if self.is_half: |
|
npy = npy.astype("float16") |
|
feats = ( torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats) |
|
|
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) |
|
if protect < 0.5 and pitch is not None and pitchf is not None: |
|
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) |
|
|
|
p_len = audio0.shape[0] // self.window |
|
if feats.shape[1] < p_len: |
|
p_len = feats.shape[1] |
|
if pitch is not None and pitchf is not None: |
|
pitch = pitch[:, :p_len] |
|
pitchf = pitchf[:, :p_len] |
|
|
|
if protect < 0.5 and pitch is not None and pitchf is not None: |
|
pitchff = pitchf.clone() |
|
pitchff[pitchf > 0] = 1 |
|
pitchff[pitchf < 1] = protect |
|
pitchff = pitchff.unsqueeze(-1) |
|
feats = feats * pitchff + feats0 * (1 - pitchff) |
|
feats = feats.to(feats0.dtype) |
|
p_len = torch.tensor([p_len], device=self.device).long() |
|
|
|
with torch.no_grad(): |
|
if pitch is not None and pitchf is not None: |
|
audio1 = ( |
|
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]) |
|
.data.cpu() |
|
.float() |
|
.numpy() |
|
) |
|
else: |
|
audio1 = ((net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()) |
|
|
|
del feats, p_len, padding_mask |
|
return audio1 |
|
|
|
def pipeline(self,model, net_g, sid, audio, input_audio_path, times, f0_up_key, f0_method, file_index, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, f0_file=None,): |
|
if ( |
|
file_index != "" |
|
and os.path.exists(file_index) == True |
|
and index_rate != 0 |
|
): |
|
try: |
|
index = faiss.read_index(file_index) |
|
big_npy = index.reconstruct_n(0, index.ntotal) |
|
except: |
|
traceback.print_exc() |
|
index = big_npy = None |
|
else: |
|
index = big_npy = None |
|
audio = signal.filtfilt(bh, ah, audio) |
|
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect") |
|
opt_ts = [] |
|
if audio_pad.shape[0] > self.t_max: |
|
audio_sum = np.zeros_like(audio) |
|
for i in range(self.window): |
|
audio_sum += audio_pad[i : i - self.window] |
|
for t in range(self.t_center, audio.shape[0], self.t_center): |
|
opt_ts.append( |
|
t |
|
- self.t_query |
|
+ np.where( |
|
np.abs(audio_sum[t - self.t_query : t + self.t_query]) |
|
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min() |
|
)[0][0] |
|
) |
|
s = 0 |
|
audio_opt = [] |
|
t = None |
|
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect") |
|
p_len = audio_pad.shape[0] // self.window |
|
inp_f0 = None |
|
if hasattr(f0_file, "name") == True: |
|
try: |
|
with open(f0_file.name, "r") as f: |
|
lines = f.read().strip("\n").split("\n") |
|
inp_f0 = [] |
|
for line in lines: |
|
inp_f0.append([float(i) for i in line.split(",")]) |
|
inp_f0 = np.array(inp_f0, dtype="float64") |
|
except: |
|
traceback.print_exc() |
|
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() |
|
pitch, pitchf = None, None |
|
if if_f0 == 1: |
|
pitch, pitchf = self.get_f0( |
|
input_audio_path,audio_pad,p_len,f0_up_key,f0_method,filter_radius,inp_f0, |
|
) |
|
pitch = pitch[:p_len] |
|
pitchf = pitchf[:p_len] |
|
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() |
|
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float() |
|
for t in opt_ts: |
|
t = t // self.window * self.window |
|
if if_f0 == 1: |
|
audio_opt.append( |
|
self.vc(model, net_g, sid,audio_pad[s : t + self.t_pad2 + self.window], pitch[:, s // self.window : (t + self.t_pad2) // self.window],pitchf[:, s // self.window : (t + self.t_pad2) // self.window],times,index,big_npy,index_rate,version,protect,)[self.t_pad_tgt : -self.t_pad_tgt]) |
|
else: |
|
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s : t + self.t_pad2 + self.window],None,None,times,index,big_npy,index_rate,version,protect)[self.t_pad_tgt : -self.t_pad_tgt]) |
|
s = t |
|
if if_f0 == 1: |
|
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],pitch[:, t // self.window :] if t is not None else pitch,pitchf[:, t // self.window :] if t is not None else pitchf,times,index,big_npy,index_rate,version,protect,)[self.t_pad_tgt : -self.t_pad_tgt]) |
|
else: |
|
audio_opt.append(self.vc(model, net_g, sid, audio_pad[t:], None, None, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt]) |
|
audio_opt = np.concatenate(audio_opt) |
|
if rms_mix_rate != 1: |
|
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate) |
|
if resample_sr >= 16000 and tgt_sr != resample_sr: |
|
audio_opt = librosa.resample(audio_opt, orig_sr=tgt_sr, target_sr=resample_sr) |
|
audio_max = np.abs(audio_opt).max() / 0.99 |
|
max_int16 = 32768 |
|
if audio_max > 1: |
|
max_int16 /= audio_max |
|
audio_opt = (audio_opt * max_int16).astype(np.int16) |
|
del pitch, pitchf, sid |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
return audio_opt |