File size: 28,806 Bytes
c5819e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import cv2
import numpy as np
from hivisionai.hycv.utils import get_box_pro
from hivisionai.hycv.vision import cover_image, draw_picture_dots
from math import fabs, sin, radians, cos

def opencv_rotate(img, angle):
    h, w = img.shape[:2]
    center = (w / 2, h / 2)
    scale = 1.0
    # 2.1获取M矩阵
    """

    M矩阵

    [

    cosA -sinA (1-cosA)*centerX+sinA*centerY

    sinA cosA  -sinA*centerX+(1-cosA)*centerY

    ]

    """
    M = cv2.getRotationMatrix2D(center, angle, scale)
    # 2.2 新的宽高,radians(angle) 把角度转为弧度 sin(弧度)
    new_H = int(w * fabs(sin(radians(angle))) + h * fabs(cos(radians(angle))))
    new_W = int(h * fabs(sin(radians(angle))) + w * fabs(cos(radians(angle))))
    # 2.3 平移
    M[0, 2] += (new_W - w) / 2
    M[1, 2] += (new_H - h) / 2
    rotate = cv2.warpAffine(img, M, (new_W, new_H), borderValue=(0, 0, 0))
    return rotate


def transformationNeck2(image:np.ndarray, per_to_side:float=0.8)->np.ndarray:
    """

    透视变换脖子函数,输入图像和四个点(矩形框)

    矩形框内的图像可能是不完整的(边角有透明区域)

    我们将根据透视变换将矩形框内的图像拉伸成和矩形框一样的形状.

    算法分为几个步骤: 选择脖子的四个点 -> 选定这四个点拉伸后的坐标 -> 透视变换 -> 覆盖原图

    """
    _, _, _, a = cv2.split(image)  # 这应该是一个四通道的图像
    height, width = a.shape
    def locate_side(image_:np.ndarray, x_:int, y_max:int) -> int:
        # 寻找x=y, 且 y <= y_max 上从下往上第一个非0的点,如果没找到就返回0
        y_ = 0
        for y_ in range(y_max - 1, -1, -1):
            if image_[y_][x_] != 0:
                break
        return y_
    def locate_width(image_:np.ndarray, y_:int, mode, left_or_right:int=None):
        # 从y=y这个水平线上寻找两边的非零点
        # 增加left_or_right的原因在于为下面check_jaw服务
        if mode==1:  # 左往右
            x_ = 0
            if left_or_right is None:
                left_or_right = 0
            for x_ in range(left_or_right, width):
                if image_[y_][x_] != 0:
                    break
        else:  # 右往左
            x_ = width
            if left_or_right is None:
                left_or_right = width - 1
            for x_ in range(left_or_right, -1, -1):
                if image_[y_][x_] != 0:
                    break
        return x_
    def check_jaw(image_:np.ndarray, left_, right_):
        """

        检查选择的点是否与截到下巴,如果截到了,就往下平移一个单位

        """
        f= True # True代表没截到下巴
        # [x, y]
        for x_cell in range(left_[0] + 1, right_[0]):
            if image_[left_[1]][x_cell] == 0:
                f = False
                break
        if f is True:
            return left_, right_
        else:
            y_ = left_[1] + 2
            x_left_ = locate_width(image_, y_, mode=1, left_or_right=left_[0])
            x_right_ = locate_width(image_, y_, mode=2, left_or_right=right_[0])
            left_, right_ = check_jaw(image_, [x_left_, y_], [x_right_, y_])
        return left_, right_
    # 选择脖子的四个点,核心在于选择上面的两个点,这两个点的确定的位置应该是"宽出来的"两个点
    _, _ ,_, a = cv2.split(image)  # 这应该是一个四通道的图像
    ret,a_thresh = cv2.threshold(a,127,255,cv2.THRESH_BINARY)
    y_high, y_low, x_left, x_right = get_box_pro(image=image, model=1) # 直接返回矩阵信息
    y_left_side = locate_side(image_=a_thresh, x_=x_left, y_max=y_low)  # 左边的点的y轴坐标
    y_right_side = locate_side(image_=a_thresh, x_=x_right, y_max=y_low)  # 右边的点的y轴坐标
    y = min(y_left_side, y_right_side)  # 将两点的坐标保持相同
    cell_left_above, cell_right_above = check_jaw(a_thresh,[x_left, y], [x_right, y])
    x_left, x_right = cell_left_above[0], cell_right_above[0]
    # 此时我们寻找到了脖子的"宽出来的"两个点,这两个点作为上面的两个点, 接下来寻找下面的两个点
    if per_to_side >1:
        assert ValueError("per_to_side 必须小于1!")
    # 在后面的透视变换中我会把它拉成矩形, 在这里我先获取四个点的高和宽
    height_ = 150  # 这个值应该是个变化的值,与拉伸的长度有关,但是现在先规定为150
    width_ = x_right - x_left  # 其实也就是 cell_right_above[1] - cell_left_above[1]
    y = int((y_low - y)*per_to_side + y)  # 定位y轴坐标
    cell_left_below, cell_right_bellow = ([locate_width(a_thresh, y_=y, mode=1), y], [locate_width(a_thresh, y_=y, mode=2), y])
    # 四个点全齐,开始透视变换
    # 寻找透视变换后的四个点,只需要变换below的两个点即可
    # cell_left_below_final, cell_right_bellow_final = ([cell_left_above[1], y_low], [cell_right_above[1], y_low])
    # 需要变换的四个点为 cell_left_above, cell_right_above, cell_left_below, cell_right_bellow
    rect = np.array([cell_left_above, cell_right_above, cell_left_below, cell_right_bellow],
                    dtype='float32')
    # 变化后的坐标点
    dst = np.array([[0, 0], [width_, 0], [0 , height_], [width_, height_]],
                    dtype='float32')
    # 计算变换矩阵
    M = cv2.getPerspectiveTransform(rect, dst)
    warped = cv2.warpPerspective(image, M, (width_, height_))
    final = cover_image(image=warped, background=image, mode=3, x=cell_left_above[0], y=cell_left_above[1])
    # tmp = np.zeros(image.shape)
    # final = cover_image(image=warped, background=tmp, mode=3, x=cell_left_above[0], y=cell_left_above[1])
    # final = cover_image(image=image, background=final, mode=3, x=0, y=0)
    return final


def transformationNeck(image:np.ndarray, cutNeckHeight:int, neckBelow:int,

                       toHeight:int,per_to_side:float=0.75) -> np.ndarray:
    """

    脖子扩充算法, 其实需要输入的只是脖子扣出来的部分以及需要被扩充的高度/需要被扩充成的高度.

    """
    height, width, channels = image.shape
    _, _, _, a = cv2.split(image)  # 这应该是一个四通道的图像
    ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY)  # 将透明图层二值化
    def locate_width(image_:np.ndarray, y_:int, mode, left_or_right:int=None):
        # 从y=y这个水平线上寻找两边的非零点
        # 增加left_or_right的原因在于为下面check_jaw服务
        if mode==1:  # 左往右
            x_ = 0
            if left_or_right is None:
                left_or_right = 0
            for x_ in range(left_or_right, width):
                if image_[y_][x_] != 0:
                    break
        else:  # 右往左
            x_ = width
            if left_or_right is None:
                left_or_right = width - 1
            for x_ in range(left_or_right, -1, -1):
                if image_[y_][x_] != 0:
                    break
        return x_
    def check_jaw(image_:np.ndarray, left_, right_):
        """

        检查选择的点是否与截到下巴,如果截到了,就往下平移一个单位

        """
        f= True # True代表没截到下巴
        # [x, y]
        for x_cell in range(left_[0] + 1, right_[0]):
            if image_[left_[1]][x_cell] == 0:
                f = False
                break
        if f is True:
            return left_, right_
        else:
            y_ = left_[1] + 2
            x_left_ = locate_width(image_, y_, mode=1, left_or_right=left_[0])
            x_right_ = locate_width(image_, y_, mode=2, left_or_right=right_[0])
            left_, right_ = check_jaw(image_, [x_left_, y_], [x_right_, y_])
        return left_, right_
    x_left = locate_width(image_=a_thresh, mode=1, y_=cutNeckHeight)
    x_right = locate_width(image_=a_thresh, mode=2, y_=cutNeckHeight)
    # 在这里我们取消了对下巴的检查,原因在于输入的imageHeight并不能改变
    # cell_left_above, cell_right_above = check_jaw(a_thresh, [x_left, imageHeight], [x_right, imageHeight])
    cell_left_above, cell_right_above = [x_left, cutNeckHeight], [x_right, cutNeckHeight]
    toWidth = x_right - x_left  # 矩形宽
    # 此时我们寻找到了脖子的"宽出来的"两个点,这两个点作为上面的两个点, 接下来寻找下面的两个点
    if per_to_side >1:
        assert ValueError("per_to_side 必须小于1!")
    y_below = int((neckBelow - cutNeckHeight) * per_to_side + cutNeckHeight)  # 定位y轴坐标
    cell_left_below = [locate_width(a_thresh, y_=y_below, mode=1), y_below]
    cell_right_bellow = [locate_width(a_thresh, y_=y_below, mode=2), y_below]
    # 四个点全齐,开始透视变换
    # 需要变换的四个点为 cell_left_above, cell_right_above, cell_left_below, cell_right_bellow
    rect = np.array([cell_left_above, cell_right_above, cell_left_below, cell_right_bellow],
                    dtype='float32')
    # 变化后的坐标点
    dst = np.array([[0, 0], [toWidth, 0], [0 , toHeight], [toWidth, toHeight]],
                    dtype='float32')
    M = cv2.getPerspectiveTransform(rect, dst)
    warped = cv2.warpPerspective(image, M, (toWidth, toHeight))
    # 将变换后的图像覆盖到原图上
    final = cover_image(image=warped, background=image, mode=3, x=cell_left_above[0], y=cell_left_above[1])
    return final


def bestJunctionCheck_beta(image:np.ndarray, stepSize:int=4, if_per:bool=False):
    """

    最优衔接点检测算法, 去寻找脖子的"拐点"

    """
    point_k = 1
    _, _, _, a = cv2.split(image)  # 这应该是一个四通道的图像
    height, width = a.shape
    ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY)  # 将透明图层二值化
    y_high, y_low, x_left, x_right = get_box_pro(image=image, model=1)  # 直接返回矩阵信息
    def scan(y_:int, max_num:int=2):
        num = 0
        left = False
        right = False
        for x_ in range(width):
            if a_thresh[y_][x_] != 0:
                if x_ < width // 2 and left is False:
                    num += 1
                    left = True
                elif x_ > width // 2 and right is False:
                    num += 1
                    right = True
        return True if num >= max_num else False
    def locate_neck_above():
        """

        定位脖子的尖尖脚

        """
        for y_ in range( y_high - 2, height):
            if scan(y_):
                return y_, y_
    y_high_left, y_high_right = locate_neck_above()
    def locate_width_pro(image_:np.ndarray, y_:int, mode):
        """

        这会是一个生成器,用于生成脖子两边的轮廓

        x_, y_ 是启始点的坐标,每一次寻找都会让y_+1

        mode==1说明是找左边的边,即,image_[y_][x_] == 0 且image_[y_][x_ + 1] !=0 时跳出;

            否则 当image_[y_][x_] != 0 时, x_ - 1; 当image_[y_][x_] == 0 且 image_[y_][x_ + 1] ==0 时x_ + 1

        mode==2说明是找右边的边,即,image_[y_][x_] == 0 且image_[y_][x_ - 1] !=0 时跳出

            否则 当image_[y_][x_] != 0 时, x_ + 1; 当image_[y_][x_] == 0 且 image_[y_][x_ - 1] ==0 时x_ - 1

        """
        y_ += 1
        if mode == 1:
            x_ = 0
            while 0 <= y_ < height and 0 <= x_ < width:
                while image_[y_][x_] != 0 and x_ >= 0:
                    x_ -= 1
                while image_[y_][x_] == 0 and image_[y_][x_ + 1] == 0 and x_ < width - 2:
                    x_ += 1
                yield [y_, x_]
                y_ += 1
        elif mode == 2:
            x_ = width-1
            while 0 <= y_ < height and 0 <= x_ < width:
                while image_[y_][x_] != 0  and x_ < width - 2: x_ += 1
                while image_[y_][x_] == 0 and image_[y_][x_ - 1] == 0 and x_ >= 0: x_ -= 1
                yield [y_, x_]
                y_ += 1
        yield False
    def kGenerator(image_:np.ndarray, mode):
        """

        导数生成器,用来生成每一个点对应的导数

        """
        y_ = y_high_left if mode == 1 else y_high_right
        c_generator = locate_width_pro(image_=image_, y_=y_, mode=mode)
        for cell in c_generator:
            nc = locate_width_pro(image_=image_, y_=cell[0] + stepSize, mode=mode)
            nextCell = next(nc)
            if nextCell is False:
                yield False, False
            else:
                k = (cell[1] - nextCell[1]) / stepSize
                yield k, cell
    def findPt(image_:np.ndarray, mode):
        k_generator = kGenerator(image_=image_, mode=mode)
        k, cell = next(k_generator)
        k_next, cell_next = next(k_generator)
        if k is False:
            raise ValueError("无法找到拐点!")
        while k_next is not False:
            k_next, cell_next = next(k_generator)
            if (k_next < - 1 / stepSize) or k_next > point_k:
                break
            cell = cell_next
        # return int(cell[0] + stepSize / 2)
        return cell[0]
    # 先找左边的拐点:
    pointY_left = findPt(image_=a_thresh, mode=1)
    # 再找右边的拐点:
    pointY_right = findPt(image_=a_thresh, mode=2)
    point = (pointY_left + pointY_right) // 2
    if if_per is True:
        point = (pointY_left + pointY_right) // 2
        return point / (y_low - y_high)
    pointX_left = next(locate_width_pro(image_=a_thresh, y_= point - 1, mode=1))[1]
    pointX_right = next(locate_width_pro(image_=a_thresh, y_=point- 1, mode=2))[1]
    return [pointX_left, point], [pointX_right, point]


def bestJunctionCheck(image:np.ndarray, offset:int, stepSize:int=4):
    """

    最优点检测算算法输入一张脖子图片(无论这张图片是否已经被二值化,我都认为没有被二值化),输出一个小数(脖子最上方与衔接点位置/脖子图像长度)

    与beta版不同的是它新增了一个阈值限定内容.

    对于脖子而言,我我们首先可以定位到上面的部分,然后根据上面的这个点向下进行遍历检测.

    与beta版类似,我们使用一个stepSize来用作斜率的检测

    但是对于遍历检测而言,与beta版不同的是,我们需要对遍历的地方进行一定的限制.

    限制的标准是,如果当前遍历的点的横坐标和起始点横坐标的插值超过了某个阈值,则认为是越界.

    """
    point_k = 1
    _, _, _, a = cv2.split(image)  # 这应该是一个四通道的图像
    height, width = a.shape
    ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY)  # 将透明图层二值化
    # 直接返回脖子的位置信息, 修正系数为0, get_box_pro内部也封装了二值化,所以直接输入原图
    y_high, y_low, _, _ = get_box_pro(image=image, model=1, correction_factor=0)
    # 真正有用的只有上下y轴的两个值...
    # 首先当然是确定起始点的位置,我们用同样的scan扫描函数进行行遍历.
    def scan(y_:int, max_num:int=2):
        num = 0
        # 设定两个值,分别代表脖子的左边和右边
        left = False
        right = False
        for x_ in range(width):
            if a_thresh[y_][x_] != 0:
                # 检测左边
                if x_ < width // 2 and left is False:
                    num += 1
                    left = True
                # 检测右边
                elif x_ > width // 2 and right is False:
                    num += 1
                    right = True
        return True if num >= max_num else False
    def locate_neck_above():
        """

        定位脖子的尖尖脚

        """
        # y_high就是脖子的最高点
        for y_ in range(y_high, height):
            if scan(y_):
                return y_
    y_start = locate_neck_above()  # 得到遍历的初始高度
    if y_low - y_start < stepSize: assert ValueError("脖子太小!")
    # 然后获取一下初始的坐标点
    x_left, x_right = 0, width
    for x_left_ in range(0, width):
        if a_thresh[y_start][x_left_] != 0:
            x_left = x_left_
            break
    for x_right_  in range(width -1 , -1, -1):
        if a_thresh[y_start][x_right_] != 0:
            x_right = x_right_
            break
    # 接下来我定义两个生成器,首先是脖子轮廓(向下寻找的)生成器,每进行一次next,生成器会返回y+1的脖子轮廓点
    def contoursGenerator(image_:np.ndarray, y_:int, mode):
        """

        这会是一个生成器,用于生成脖子两边的轮廓

        y_ 是启始点的y坐标,每一次寻找都会让y_+1

        mode==1说明是找左边的边,即,image_[y_][x_] == 0 且image_[y_][x_ + 1] !=0 时跳出;

            否则 当image_[y_][x_] != 0 时, x_ - 1; 当image_[y_][x_] == 0 且 image_[y_][x_ + 1] ==0 时x_ + 1

        mode==2说明是找右边的边,即,image_[y_][x_] == 0 且image_[y_][x_ - 1] !=0 时跳出

            否则 当image_[y_][x_] != 0 时, x_ + 1; 当image_[y_][x_] == 0 且 image_[y_][x_ - 1] ==0 时x_ - 1

        """
        y_ += 1
        try:
            if mode == 1:
                x_ = 0
                while 0 <= y_ < height and 0 <= x_ < width:
                    while image_[y_][x_] != 0 and x_ >= 0: x_ -= 1
                    # 这里其实会有bug,不过可以不管
                    while x_ < width and image_[y_][x_] == 0 and image_[y_][x_ + 1] == 0: x_ += 1
                    yield [y_, x_]
                    y_ += 1
            elif mode == 2:
                x_ = width-1
                while 0 <= y_ < height and 0 <= x_ < width:
                    while x_ < width and image_[y_][x_] != 0: x_ += 1
                    while x_ >= 0 and image_[y_][x_] == 0 and image_[y_][x_ - 1] == 0: x_ -= 1
                    yield [y_, x_]
                    y_ += 1
        # 当处理失败则返回False
        except IndexError:
            yield False
    # 然后是斜率生成器,这个生成器依赖子轮廓生成器,每一次生成轮廓后会计算斜率,另一个点的选取和stepSize有关
    def kGenerator(image_: np.ndarray, mode):
        """

        导数生成器,用来生成每一个点对应的导数

        """
        y_ = y_start
        # 对起始点建立一个生成器, mode=1时是左边轮廓,mode=2时是右边轮廓
        c_generator = contoursGenerator(image_=image_, y_=y_, mode=mode)
        for cell in c_generator:
            # 寻找距离当前cell距离为stepSize的轮廓点
            kc = contoursGenerator(image_=image_, y_=cell[0] + stepSize, mode=mode)
            kCell = next(kc)
            if kCell is False:
                # 寻找失败
                yield False, False
            else:
                # 寻找成功,返回当坐标点和斜率值
                # 对于左边而言,斜率必然是前一个点的坐标减去后一个点的坐标
                # 对于右边而言,斜率必然是后一个点的坐标减去前一个点的坐标
                k = (cell[1] - kCell[1]) / stepSize if mode == 1 else (kCell[1] - cell[1]) / stepSize
                yield k, cell
    # 接着开始写寻找算法,需要注意的是我们是分两边选择的
    def findPt(image_:np.ndarray, mode):
        x_base = x_left if mode == 1 else x_right
        k_generator = kGenerator(image_=image_, mode=mode)
        k, cell = k_generator.__next__()
        if k is False:
            raise ValueError("无法找到拐点!")
        k_next, cell_next = k_generator.__next__()
        while k_next is not False:
            cell = cell_next
            if cell[1] > x_base and mode == 2:
                x_base = cell[1]
            elif cell[1] < x_base and mode == 1:
                x_base = cell[1]
            # 跳出循环的方式一:斜率超过了某个值
            if k_next > point_k:
                print("K out")
                break
            # 跳出循环的方式二:超出阈值
            elif abs(cell[1] - x_base) > offset:
                print("O out")
                break
            k_next, cell_next = k_generator.__next__()
        if abs(cell[1] - x_base) > offset:
            cell[0] = cell[0] - offset - 1
        return cell[0]
    # 先找左边的拐点:
    pointY_left = findPt(image_=a_thresh, mode=1)
    # 再找右边的拐点:
    pointY_right = findPt(image_=a_thresh, mode=2)
    point = min(pointY_right, pointY_left)
    per = (point - y_high) / (y_low - y_high)
    # pointX_left = next(contoursGenerator(image_=a_thresh, y_= point- 1, mode=1))[1]
    # pointX_right = next(contoursGenerator(image_=a_thresh, y_=point - 1, mode=2))[1]
    # return [pointX_left, point], [pointX_right, point]
    return per


def checkSharpCorner(image:np.ndarray):
    _, _, _, a = cv2.split(image)  # 这应该是一个四通道的图像
    height, width = a.shape
    ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY)  # 将透明图层二值化
    # 直接返回脖子的位置信息, 修正系数为0, get_box_pro内部也封装了二值化,所以直接输入原图
    y_high, y_low, _, _ = get_box_pro(image=image, model=1, correction_factor=0)
    def scan(y_:int, max_num:int=2):
        num = 0
        # 设定两个值,分别代表脖子的左边和右边
        left = False
        right = False
        for x_ in range(width):
            if a_thresh[y_][x_] != 0:
                # 检测左边
                if x_ < width // 2 and left is False:
                    num += 1
                    left = True
                # 检测右边
                elif x_ > width // 2 and right is False:
                    num += 1
                    right = True
        return True if num >= max_num else False
    def locate_neck_above():
        """

        定位脖子的尖尖脚

        """
        # y_high就是脖子的最高点
        for y_ in range(y_high, height):
            if scan(y_):
                return y_
    y_start = locate_neck_above()
    return y_start


def checkJaw(image:np.ndarray, y_start:int):
    # 寻找"马鞍点"
    _, _, _, a = cv2.split(image)  # 这应该是一个四通道的图像
    height, width = a.shape
    ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY)  # 将透明图层二值化
    if width <=1: raise TypeError("图像太小!")
    x_left, x_right = 0, width - 1
    for x_left in range(width):
        if a_thresh[y_start][x_left] != 0:
            while a_thresh[y_start][x_left] != 0: x_left += 1
            break
    for x_right in range(width-1, -1, -1):
        if a_thresh[y_start][x_right] != 0:
            while a_thresh[y_start][x_right] != 0: x_right -= 1
            break
    point_list_y = []
    point_list_x = []
    for x in range(x_left, x_right):
        y = y_start
        while a_thresh[y][x] == 0: y += 1
        point_list_y.append(y)
        point_list_x.append(x)
    y = max(point_list_y)
    x = point_list_x[point_list_y.index(y)]
    return x, y


def checkHairLOrR(cloth_image_input_cut,

                  input_a,

                  neck_a,

                  cloth_image_input_top_y,

                  cutbar_top=0.4,

                  cutbar_bottom=0.5,

                  threshold=0.3):
    """

    本函数用于检测衣服是否被头发遮挡,当前只考虑左右是否被遮挡,即"一刀切"

    返回int

    0代表没有被遮挡

    1代表左边被遮挡

    2代表右边被遮挡

    3代表全被遮挡了

    约定,输入的图像是一张灰度图,且被二值化过.

    """
    def per_darkPoint(img:np.ndarray) -> int:
        """

        用于遍历相加图像上的黑点.

        然后返回黑点数/图像面积

        """
        h, w = img.shape
        sum_darkPoint = 0
        for y in range(h):
            for x in range(w):
                if img[y][x] == 0:
                    sum_darkPoint += 1
        return sum_darkPoint / (h * w)

    if threshold < 0 or threshold > 1: raise TypeError("阈值设置必须在0和1之间!")

    # 裁出cloth_image_input_cut按高度40%~50%的区域-cloth_image_input_cutbar,并转换为A矩阵,做二值化
    cloth_image_input_height = cloth_image_input_cut.shape[0]
    _, _, _, cloth_image_input_cutbar = cv2.split(cloth_image_input_cut[
                                                  int(cloth_image_input_height * cutbar_top):int(
                                                      cloth_image_input_height * cutbar_bottom), :])
    _, cloth_image_input_cutbar = cv2.threshold(cloth_image_input_cutbar, 127, 255, cv2.THRESH_BINARY)

    # 裁出input_image、neck_image的A矩阵的对应区域,并做二值化
    input_a_cutbar = input_a[cloth_image_input_top_y + int(cloth_image_input_height * cutbar_top):
                             cloth_image_input_top_y + int(cloth_image_input_height * cutbar_bottom), :]
    _, input_a_cutbar = cv2.threshold(input_a_cutbar, 127, 255, cv2.THRESH_BINARY)
    neck_a_cutbar = neck_a[cloth_image_input_top_y + int(cloth_image_input_height * cutbar_top):
                           cloth_image_input_top_y + int(cloth_image_input_height * cutbar_bottom), :]
    _, neck_a_cutbar = cv2.threshold(neck_a_cutbar, 50, 255, cv2.THRESH_BINARY)

    # 将三个cutbar合到一起-result_a_cutbar
    input_a_cutbar = np.uint8(255 - input_a_cutbar)
    result_a_cutbar = cv2.add(input_a_cutbar, cloth_image_input_cutbar)
    result_a_cutbar = cv2.add(result_a_cutbar, neck_a_cutbar)

    if_mask = 0
    # 我们将图像 一刀切,分为左边和右边
    height, width = result_a_cutbar.shape  # 一通道图像
    left_image = result_a_cutbar[:, :width//2]
    right_image = result_a_cutbar[:, width//2:]
    if per_darkPoint(left_image) > threshold:
        if_mask = 1
    if per_darkPoint(right_image) > threshold:
        if_mask = 3 if if_mask == 1 else 2
    return if_mask


def find_black(image):
    """

    找黑色点函数,遇到输入矩阵中的第一个黑点,返回它的y值

    """
    height, width = image.shape[0], image.shape[1]
    for i in range(height):
        for j in range(width):
            if image[i, j] < 127:
                return i
    return None


def convert_black_array(image):
    height, width = image.shape[0], image.shape[1]
    mask = np.zeros([height, width])
    for j in range(width):
        for i in range(height):
            if image[i, j] > 127:
                mask[i:, j] = 1
                break
    return mask


def checkLongHair(neck_image, head_bottom_y, neck_top_y):
    """

    长发检测函数,输入为head/neck图像,通过下巴是否为最低点,来判断是否为长发

    :return 0 : 短发

    :return 1 : 长发

    """
    jaw_y = neck_top_y + checkJaw(neck_image, y_start=checkSharpCorner(neck_image))[1]
    if jaw_y >= head_bottom_y-3:
        return 0
    else:
        return 1


def checkLongHair2(head_bottom_y, cloth_top_y):
    if head_bottom_y > cloth_top_y+10:
        return 1
    else:
        return 0


if __name__ == "__main__":
    for i in range(1, 8):
        img = cv2.imread(f"./neck_temp/neck_image{i}.png", cv2.IMREAD_UNCHANGED)
        # new = transformationNeck(image=img, cutNeckHeight=419,neckBelow=472, toHeight=150)
        # point_list = bestJunctionCheck(img, offset=5, stepSize=3)
        # per = bestJunctionCheck(img, offset=5, stepSize=3)
        # # 返回一个小数的形式, 接下来我将它处理为两个点
        point_list = []
        # y_high_, y_low_, _, _ = get_box_pro(image=img, model=1, conreection_factor=0)
        # _y = y_high_ + int((y_low_ - y_high_) * per)
        # _, _, _, a_ = cv2.split(img)  # 这应该是一个四通道的图像
        # h, w = a_.shape
        # r, a_t = cv2.threshold(a_, 127, 255, cv2.THRESH_BINARY)  # 将透明图层二值化
        # _x = 0
        # for _x in range(w):
        #     if a_t[_y][_x] != 0:
        #         break
        # point_list.append([_x, _y])
        # for _x in range(w - 1, -1, -1):
        #     if a_t[_y][_x] != 0:
        #         break
        # point_list.append([_x, _y])
        y = checkSharpCorner(img)
        point = checkJaw(image=img, y_start=y)
        point_list.append(point)
        new = draw_picture_dots(img, point_list, pen_size=2)
        cv2.imshow(f"{i}", new)
    cv2.waitKey(0)