import gradio as gr import pandas as pd from pathlib import Path abs_path = Path(__file__).parent.absolute() df = pd.read_json(str(abs_path / "assets/leaderboard_data.json")) invisible_df = df.copy() COLS = [ "T", "Model", "Average ⬆️", "ARC", "HellaSwag", "MMLU", "TruthfulQA", "Winogrande", "GSM8K", "Type", "Architecture", "Precision", "Merged", "Hub License", "#Params (B)", "Hub ❤️", "Model sha", "model_name_for_query", ] ON_LOAD_COLS = [ "T", "Model", "Average ⬆️", "ARC", "HellaSwag", "MMLU", "TruthfulQA", "Winogrande", "GSM8K", "model_name_for_query", ] TYPES = [ "str", "markdown", "number", "number", "number", "number", "number", "number", "number", "str", "str", "str", "str", "bool", "str", "number", "number", "bool", "str", "bool", "bool", "str", ] NUMERIC_INTERVALS = { "?": pd.Interval(-1, 0, closed="right"), "~1.5": pd.Interval(0, 2, closed="right"), "~3": pd.Interval(2, 4, closed="right"), "~7": pd.Interval(4, 9, closed="right"), "~13": pd.Interval(9, 20, closed="right"), "~35": pd.Interval(20, 45, closed="right"), "~60": pd.Interval(45, 70, closed="right"), "70+": pd.Interval(70, 10000, closed="right"), } MODEL_TYPE = [str(s) for s in df["T"].unique()] Precision = [str(s) for s in df["Precision"].unique()] # Searching and filtering def update_table( hidden_df: pd.DataFrame, columns: list, type_query: list, precision_query: str, size_query: list, query: str, ): filtered_df = filter_models(hidden_df, type_query, size_query, precision_query) # type: ignore filtered_df = filter_queries(query, filtered_df) df = select_columns(filtered_df, columns) return df def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: return df[(df["model_name_for_query"].str.contains(query, case=False))] # type: ignore def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: # We use COLS to maintain sorting filtered_df = df[[c for c in COLS if c in df.columns and c in columns]] return filtered_df # type: ignore def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: final_df = [] if query != "": queries = [q.strip() for q in query.split(";")] for _q in queries: _q = _q.strip() if _q != "": temp_filtered_df = search_table(filtered_df, _q) if len(temp_filtered_df) > 0: final_df.append(temp_filtered_df) if len(final_df) > 0: filtered_df = pd.concat(final_df) filtered_df = filtered_df.drop_duplicates( # type: ignore subset=["Model", "Precision", "Model sha"] ) return filtered_df def filter_models( df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, ) -> pd.DataFrame: # Show all models filtered_df = df type_emoji = [t[0] for t in type_query] filtered_df = filtered_df.loc[df["T"].isin(type_emoji)] filtered_df = filtered_df.loc[df["Precision"].isin(precision_query + ["None"])] numeric_interval = pd.IntervalIndex( sorted([NUMERIC_INTERVALS[s] for s in size_query]) # type: ignore ) params_column = pd.to_numeric(df["#Params (B)"], errors="coerce") mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) # type: ignore filtered_df = filtered_df.loc[mask] return filtered_df demo = gr.Blocks(css=str(abs_path / "assets/leaderboard_data.json")) with demo: gr.Markdown("""Test Space of the LLM Leaderboard""", elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): with gr.Row(): with gr.Column(): with gr.Row(): search_bar = gr.Textbox( placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", show_label=False, elem_id="search-bar", ) with gr.Row(): shown_columns = gr.CheckboxGroup( choices=COLS, value=ON_LOAD_COLS, label="Select columns to show", elem_id="column-select", interactive=True, ) with gr.Column(min_width=320): filter_columns_type = gr.CheckboxGroup( label="Model types", choices=MODEL_TYPE, value=MODEL_TYPE, interactive=True, elem_id="filter-columns-type", ) filter_columns_precision = gr.CheckboxGroup( label="Precision", choices=Precision, value=Precision, interactive=True, elem_id="filter-columns-precision", ) filter_columns_size = gr.CheckboxGroup( label="Model sizes (in billions of parameters)", choices=list(NUMERIC_INTERVALS.keys()), value=list(NUMERIC_INTERVALS.keys()), interactive=True, elem_id="filter-columns-size", ) leaderboard_table = gr.components.Dataframe( value=df[ON_LOAD_COLS], # type: ignore headers=ON_LOAD_COLS, datatype=TYPES, elem_id="leaderboard-table", interactive=False, visible=True, column_widths=["2%", "33%"], ) # Dummy leaderboard for handling the case when the user uses backspace key hidden_leaderboard_table_for_search = gr.components.Dataframe( value=invisible_df[COLS], # type: ignore headers=COLS, datatype=TYPES, visible=False, ) search_bar.submit( update_table, [ hidden_leaderboard_table_for_search, shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, search_bar, ], leaderboard_table, ) for selector in [ shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, ]: selector.change( update_table, [ hidden_leaderboard_table_for_search, shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, search_bar, ], leaderboard_table, queue=True, ) if __name__ == "__main__": demo.queue(default_concurrency_limit=40).launch()