Spaces:
Runtime error
Runtime error
update library
Browse files- survey_analytics_library.py +0 -150
survey_analytics_library.py
CHANGED
@@ -1,20 +1,7 @@
|
|
1 |
|
2 |
# imports
|
3 |
import pandas as pd
|
4 |
-
import numpy as np
|
5 |
-
import streamlit as st
|
6 |
-
from tqdm.notebook import tqdm
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import plotly.express as px
|
9 |
-
|
10 |
-
from sklearn.cluster import KMeans
|
11 |
-
from sklearn.metrics import silhouette_score
|
12 |
-
|
13 |
-
import zipfile
|
14 |
-
from xml.etree.cElementTree import XML
|
15 |
-
|
16 |
import re
|
17 |
-
from nltk.corpus import stopwords
|
18 |
|
19 |
|
20 |
|
@@ -82,143 +69,6 @@ def clean_text(text_string, list_of_replacements, lowercase=True, ignorecase=Fal
|
|
82 |
|
83 |
|
84 |
|
85 |
-
# remove stopwords from tokens
|
86 |
-
def remove_stopwords(tokens, language='english'):
|
87 |
-
'''
|
88 |
-
remove stopwords from tokens using list comprehension
|
89 |
-
default to using english stopwords
|
90 |
-
arguments:
|
91 |
-
tokens (list): list of token#s, output of word_tokenize()
|
92 |
-
language (str): default to english
|
93 |
-
returns:
|
94 |
-
a list of tokens without stopwords
|
95 |
-
'''
|
96 |
-
# define stopwords and store as a set
|
97 |
-
stopwords_set = set(stopwords.words(language))
|
98 |
-
# check if word is in list of stopwords
|
99 |
-
# returns a list of words not found in list of stopwords
|
100 |
-
stopwords_removed = [word for word in tokens if word not in stopwords_set]
|
101 |
-
# return
|
102 |
-
return stopwords_removed
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
import itertools
|
107 |
-
from typing import List
|
108 |
-
import plotly.graph_objects as go
|
109 |
-
from plotly.subplots import make_subplots
|
110 |
-
def visualize_barchart_titles(topic_model,
|
111 |
-
topics: List[int] = None,
|
112 |
-
subplot_titles: List[str] = None,
|
113 |
-
top_n_topics: int = 8,
|
114 |
-
n_words: int = 5,
|
115 |
-
width: int = 250,
|
116 |
-
height: int = 250) -> go.Figure:
|
117 |
-
""" Visualize a barchart of selected topics
|
118 |
-
|
119 |
-
Arguments:
|
120 |
-
topic_model: A fitted BERTopic instance.
|
121 |
-
topics: A selection of topics to visualize.
|
122 |
-
top_n_topics: Only select the top n most frequent topics.
|
123 |
-
n_words: Number of words to show in a topic
|
124 |
-
width: The width of each figure.
|
125 |
-
height: The height of each figure.
|
126 |
-
|
127 |
-
Returns:
|
128 |
-
fig: A plotly figure
|
129 |
-
|
130 |
-
Usage:
|
131 |
-
|
132 |
-
To visualize the barchart of selected topics
|
133 |
-
simply run:
|
134 |
-
|
135 |
-
```python
|
136 |
-
topic_model.visualize_barchart()
|
137 |
-
```
|
138 |
-
|
139 |
-
Or if you want to save the resulting figure:
|
140 |
-
|
141 |
-
```python
|
142 |
-
fig = topic_model.visualize_barchart()
|
143 |
-
fig.write_html("path/to/file.html")
|
144 |
-
```
|
145 |
-
<iframe src="../../getting_started/visualization/bar_chart.html"
|
146 |
-
style="width:1100px; height: 660px; border: 0px;""></iframe>
|
147 |
-
"""
|
148 |
-
colors = itertools.cycle(["#D55E00", "#0072B2", "#CC79A7", "#E69F00", "#56B4E9", "#009E73", "#F0E442"])
|
149 |
-
|
150 |
-
# Select topics based on top_n and topics args
|
151 |
-
freq_df = topic_model.get_topic_freq()
|
152 |
-
freq_df = freq_df.loc[freq_df.Topic != -1, :]
|
153 |
-
if topics is not None:
|
154 |
-
topics = list(topics)
|
155 |
-
elif top_n_topics is not None:
|
156 |
-
topics = sorted(freq_df.Topic.to_list()[:top_n_topics])
|
157 |
-
else:
|
158 |
-
topics = sorted(freq_df.Topic.to_list()[0:6])
|
159 |
-
|
160 |
-
# Initialize figure
|
161 |
-
if subplot_titles is None:
|
162 |
-
subplot_titles = [f"Topic {topic}" for topic in topics]
|
163 |
-
else:
|
164 |
-
subplot_titles = subplot_titles
|
165 |
-
columns = 4
|
166 |
-
rows = int(np.ceil(len(topics) / columns))
|
167 |
-
fig = make_subplots(rows=rows,
|
168 |
-
cols=columns,
|
169 |
-
shared_xaxes=False,
|
170 |
-
horizontal_spacing=.1,
|
171 |
-
vertical_spacing=.4 / rows if rows > 1 else 0,
|
172 |
-
subplot_titles=subplot_titles)
|
173 |
-
|
174 |
-
# Add barchart for each topic
|
175 |
-
row = 1
|
176 |
-
column = 1
|
177 |
-
for topic in topics:
|
178 |
-
words = [word + " " for word, _ in topic_model.get_topic(topic)][:n_words][::-1]
|
179 |
-
scores = [score for _, score in topic_model.get_topic(topic)][:n_words][::-1]
|
180 |
-
|
181 |
-
fig.add_trace(
|
182 |
-
go.Bar(x=scores,
|
183 |
-
y=words,
|
184 |
-
orientation='h',
|
185 |
-
marker_color=next(colors)),
|
186 |
-
row=row, col=column)
|
187 |
-
|
188 |
-
if column == columns:
|
189 |
-
column = 1
|
190 |
-
row += 1
|
191 |
-
else:
|
192 |
-
column += 1
|
193 |
-
|
194 |
-
# Stylize graph
|
195 |
-
fig.update_layout(
|
196 |
-
template="plotly_white",
|
197 |
-
showlegend=False,
|
198 |
-
title={
|
199 |
-
'text': "<b>Topic Word Scores",
|
200 |
-
'x': .5,
|
201 |
-
'xanchor': 'center',
|
202 |
-
'yanchor': 'top',
|
203 |
-
'font': dict(
|
204 |
-
size=22,
|
205 |
-
color="Black")
|
206 |
-
},
|
207 |
-
width=width*4,
|
208 |
-
height=height*rows if rows > 1 else height * 1.3,
|
209 |
-
hoverlabel=dict(
|
210 |
-
bgcolor="white",
|
211 |
-
font_size=16,
|
212 |
-
font_family="Rockwell"
|
213 |
-
),
|
214 |
-
)
|
215 |
-
|
216 |
-
fig.update_xaxes(showgrid=True)
|
217 |
-
fig.update_yaxes(showgrid=True)
|
218 |
-
|
219 |
-
return fig
|
220 |
-
|
221 |
-
|
222 |
|
223 |
# convert transformer model zero shot classification prediction into dataframe
|
224 |
def convert_zero_shot_classification_output_to_dataframe(model_output):
|
|
|
1 |
|
2 |
# imports
|
3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import re
|
|
|
5 |
|
6 |
|
7 |
|
|
|
69 |
|
70 |
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# convert transformer model zero shot classification prediction into dataframe
|
74 |
def convert_zero_shot_classification_output_to_dataframe(model_output):
|