File size: 6,396 Bytes
fca8815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import argparse
from PIL import Image
import os

from src.flux.xflux_pipeline import XFluxPipeline


def create_argparser():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--prompt", type=str, required=True,
        help="The input text prompt"
    )
    parser.add_argument(
        "--neg_prompt", type=str, default="",
        help="The input text negative prompt"
    )
    parser.add_argument(
        "--img_prompt", type=str, default=None,
        help="Path to input image prompt"
    )
    parser.add_argument(
        "--neg_img_prompt", type=str, default=None,
        help="Path to input negative image prompt"
    )
    parser.add_argument(
        "--ip_scale", type=float, default=1.0,
        help="Strength of input image prompt"
    )
    parser.add_argument(
        "--neg_ip_scale", type=float, default=1.0,
        help="Strength of negative input image prompt"
    )
    parser.add_argument(
        "--local_path", type=str, default=None,
        help="Local path to the model checkpoint (Controlnet)"
    )
    parser.add_argument(
        "--repo_id", type=str, default=None,
        help="A HuggingFace repo id to download model (Controlnet)"
    )
    parser.add_argument(
        "--name", type=str, default=None,
        help="A filename to download from HuggingFace"
    )
    parser.add_argument(
        "--ip_repo_id", type=str, default=None,
        help="A HuggingFace repo id to download model (IP-Adapter)"
    )
    parser.add_argument(
        "--ip_name", type=str, default=None,
        help="A IP-Adapter filename to download from HuggingFace"
    )
    parser.add_argument(
        "--ip_local_path", type=str, default=None,
        help="Local path to the model checkpoint (IP-Adapter)"
    )
    parser.add_argument(
        "--lora_repo_id", type=str, default=None,
        help="A HuggingFace repo id to download model (LoRA)"
    )
    parser.add_argument(
        "--lora_name", type=str, default=None,
        help="A LoRA filename to download from HuggingFace"
    )
    parser.add_argument(
        "--lora_local_path", type=str, default=None,
        help="Local path to the model checkpoint (Controlnet)"
    )
    parser.add_argument(
        "--device", type=str, default="cuda",
        help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)"
    )
    parser.add_argument(
        "--offload", action='store_true', help="Offload model to CPU when not in use"
    )
    parser.add_argument(
        "--use_ip", action='store_true', help="Load IP model"
    )
    parser.add_argument(
        "--use_lora", action='store_true', help="Load Lora model"
    )
    parser.add_argument(
        "--use_controlnet", action='store_true', help="Load Controlnet model"
    )
    parser.add_argument(
        "--num_images_per_prompt", type=int, default=1,
        help="The number of images to generate per prompt"
    )
    parser.add_argument(
        "--image", type=str, default=None, help="Path to image"
    )
    parser.add_argument(
        "--lora_weight", type=float, default=0.9, help="Lora model strength (from 0 to 1.0)"
    )
    parser.add_argument(
        "--control_type", type=str, default="canny",
        choices=("canny", "openpose", "depth", "hed", "hough", "tile"),
        help="Name of controlnet condition, example: canny"
    )
    parser.add_argument(
        "--model_type", type=str, default="flux-dev",
        choices=("flux-dev", "flux-dev-fp8", "flux-schnell"),
        help="Model type to use (flux-dev, flux-dev-fp8, flux-schnell)"
    )
    parser.add_argument(
        "--width", type=int, default=1024, help="The width for generated image"
    )
    parser.add_argument(
        "--height", type=int, default=1024, help="The height for generated image"
    )
    parser.add_argument(
        "--num_steps", type=int, default=25, help="The num_steps for diffusion process"
    )
    parser.add_argument(
        "--guidance", type=float, default=4, help="The guidance for diffusion process"
    )
    parser.add_argument(
        "--seed", type=int, default=123456789, help="A seed for reproducible inference"
    )
    parser.add_argument(
        "--true_gs", type=float, default=3.5, help="true guidance"
    )
    parser.add_argument(
        "--timestep_to_start_cfg", type=int, default=5, help="timestep to start true guidance"
    )
    parser.add_argument(
        "--save_path", type=str, default='results', help="Path to save"
    )
    return parser


def main(args):
    if args.image:
        image = Image.open(args.image)
    else:
        image = None
    
    xflux_pipeline = XFluxPipeline(args.model_type, args.device, args.offload)
    if args.use_ip:
        print('load ip-adapter:', args.ip_local_path, args.ip_repo_id, args.ip_name)
        xflux_pipeline.set_ip(args.ip_local_path, args.ip_repo_id, args.ip_name)
    if args.use_lora:
        print('load lora:', args.lora_local_path, args.lora_repo_id, args.lora_name)
        xflux_pipeline.set_lora(args.lora_local_path, args.lora_repo_id, args.lora_name, args.lora_weight)
    if args.use_controlnet:
        print('load controlnet:', args.local_path, args.repo_id, args.name)
        xflux_pipeline.set_controlnet(args.control_type, args.local_path, args.repo_id, args.name)
    
    image_prompt = Image.open(args.img_prompt) if args.img_prompt else None
    neg_image_prompt = Image.open(args.neg_img_prompt) if args.neg_img_prompt else None
        
    for _ in range(args.num_images_per_prompt):
        result = xflux_pipeline(
            prompt=args.prompt,
            controlnet_image=image,
            width=args.width,
            height=args.height,
            guidance=args.guidance,
            num_steps=args.num_steps,
            seed=args.seed,
            true_gs=args.true_gs,
            neg_prompt=args.neg_prompt,
            timestep_to_start_cfg=args.timestep_to_start_cfg,
            image_prompt=image_prompt, 
            neg_image_prompt=neg_image_prompt, 
            ip_scale=args.ip_scale, 
            neg_ip_scale=args.neg_ip_scale, 
        )
        if not os.path.exists(args.save_path):
            os.mkdir(args.save_path)
        ind = len(os.listdir(args.save_path))
        result.save(os.path.join(args.save_path, f"result_{ind}.png"))
        args.seed = args.seed + 1


if __name__ == "__main__":
    args = create_argparser().parse_args()
    main(args)