Spaces:
Running
on
Zero
Running
on
Zero
app
Browse files
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.42.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Flux Advanced Explorer
|
3 |
+
emoji: 🦄
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.42.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
short_description: With IP Adapter
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import os
|
4 |
+
from flux.src.flux.xflux_pipeline import XFluxPipeline
|
5 |
+
import random
|
6 |
+
import spaces
|
7 |
+
|
8 |
+
def run_xflux_pipeline(
|
9 |
+
prompt, image, repo_id, name, device,
|
10 |
+
model_type, width, height, timestep_to_start_cfg, num_steps, true_gs, guidance,
|
11 |
+
neg_prompt="",
|
12 |
+
negative_image=None,
|
13 |
+
save_path='results', control_type='depth', use_controlnet=False, seed=None, num_images_per_prompt=1, use_lora=False, lora_weight=0.7, lora_repo_id="XLabs-AI/flux-lora-collection", lora_name="realism_lora.safetensors", use_ip=False
|
14 |
+
):
|
15 |
+
# Montando os argumentos simulando a linha de comando
|
16 |
+
class Args:
|
17 |
+
def __init__(self):
|
18 |
+
self.prompt = prompt
|
19 |
+
self.image = image
|
20 |
+
self.control_type = control_type
|
21 |
+
self.repo_id = repo_id
|
22 |
+
self.name = name
|
23 |
+
self.device = device
|
24 |
+
self.use_controlnet = use_controlnet
|
25 |
+
self.model_type = model_type
|
26 |
+
self.width = width
|
27 |
+
self.height = height
|
28 |
+
self.timestep_to_start_cfg = timestep_to_start_cfg
|
29 |
+
self.num_steps = num_steps
|
30 |
+
self.true_gs = true_gs
|
31 |
+
self.guidance = guidance
|
32 |
+
self.num_images_per_prompt = num_images_per_prompt
|
33 |
+
self.seed = seed if seed else 123456789
|
34 |
+
self.neg_prompt = neg_prompt
|
35 |
+
self.img_prompt = Image.open(image)
|
36 |
+
self.neg_img_prompt = Image.open(negative_image) if negative_image else None
|
37 |
+
self.ip_scale = 1.0
|
38 |
+
self.neg_ip_scale = 1.0
|
39 |
+
self.local_path = None
|
40 |
+
self.ip_repo_id = "XLabs-AI/flux-ip-adapter"
|
41 |
+
self.ip_name = "flux-ip-adapter.safetensors"
|
42 |
+
self.ip_local_path = None
|
43 |
+
self.lora_repo_id = lora_repo_id
|
44 |
+
self.lora_name = lora_name
|
45 |
+
self.lora_local_path = None
|
46 |
+
self.offload = False
|
47 |
+
self.use_ip = use_ip
|
48 |
+
self.use_lora = use_lora
|
49 |
+
self.lora_weight = lora_weight
|
50 |
+
self.save_path = save_path
|
51 |
+
|
52 |
+
args = Args()
|
53 |
+
|
54 |
+
# Carregar a imagem se fornecida
|
55 |
+
if args.image:
|
56 |
+
image = Image.open(args.image)
|
57 |
+
else:
|
58 |
+
image = None
|
59 |
+
|
60 |
+
# Inicializar o pipeline com os parâmetros necessários
|
61 |
+
xflux_pipeline = XFluxPipeline(args.model_type, args.device, args.offload)
|
62 |
+
|
63 |
+
# Configurar ControlNet se necessário
|
64 |
+
if args.use_controlnet:
|
65 |
+
print('Loading ControlNet:', args.local_path, args.repo_id, args.name)
|
66 |
+
xflux_pipeline.set_controlnet(args.control_type, args.local_path, args.repo_id, args.name)
|
67 |
+
if args.use_ip:
|
68 |
+
print('load ip-adapter:', args.ip_local_path, args.ip_repo_id, args.ip_name)
|
69 |
+
xflux_pipeline.set_ip(args.ip_local_path, args.ip_repo_id, args.ip_name)
|
70 |
+
if args.use_lora:
|
71 |
+
print('load lora:', args.lora_local_path, args.lora_repo_id, args.lora_name)
|
72 |
+
xflux_pipeline.set_lora(args.lora_local_path, args.lora_repo_id, args.lora_name, args.lora_weight)
|
73 |
+
|
74 |
+
# Laço para gerar imagens
|
75 |
+
images = []
|
76 |
+
for _ in range(args.num_images_per_prompt):
|
77 |
+
seed = random.randint(0, 2147483647)
|
78 |
+
result = xflux_pipeline(
|
79 |
+
prompt=args.prompt,
|
80 |
+
controlnet_image=image,
|
81 |
+
width=args.width,
|
82 |
+
height=args.height,
|
83 |
+
guidance=args.guidance,
|
84 |
+
num_steps=args.num_steps,
|
85 |
+
seed=seed,
|
86 |
+
true_gs=args.true_gs,
|
87 |
+
neg_prompt=args.neg_prompt,
|
88 |
+
timestep_to_start_cfg=args.timestep_to_start_cfg,
|
89 |
+
image_prompt=args.img_prompt,
|
90 |
+
neg_image_prompt=args.neg_img_prompt,
|
91 |
+
ip_scale=args.ip_scale,
|
92 |
+
neg_ip_scale=args.neg_ip_scale,
|
93 |
+
)
|
94 |
+
images.append(result)
|
95 |
+
|
96 |
+
return images
|
97 |
+
|
98 |
+
@spaces.GPU(duration=500)
|
99 |
+
def process_image(image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip, lora_name, lora_path, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg):
|
100 |
+
return run_xflux_pipeline(
|
101 |
+
prompt=prompt,
|
102 |
+
neg_prompt=neg_prompt,
|
103 |
+
image=image,
|
104 |
+
negative_image=negative_image,
|
105 |
+
lora_name=lora_name,
|
106 |
+
lora_weight=lora_weight,
|
107 |
+
lora_repo_id=lora_path,
|
108 |
+
control_type="depth" if use_depth else "hed" if use_hed else "canny",
|
109 |
+
repo_id="XLabs-AI/flux-controlnet-collections",
|
110 |
+
name="flux-depth-controlnet.safetensors",
|
111 |
+
device="cuda",
|
112 |
+
use_controlnet=use_controlnet,
|
113 |
+
model_type="flux-dev",
|
114 |
+
width=1024,
|
115 |
+
height=1024,
|
116 |
+
timestep_to_start_cfg=cfg,
|
117 |
+
num_steps=steps,
|
118 |
+
num_images_per_prompt=4,
|
119 |
+
use_lora=use_lora,
|
120 |
+
true_gs=true_gs,
|
121 |
+
use_ip=use_ip,
|
122 |
+
guidance=guidance
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
custom_css = """
|
127 |
+
body {
|
128 |
+
background: rgb(24, 24, 27);
|
129 |
+
}
|
130 |
+
|
131 |
+
.gradio-container {
|
132 |
+
background: rgb(24, 24, 27);
|
133 |
+
}
|
134 |
+
|
135 |
+
.app-container {
|
136 |
+
background: rgb(24, 24, 27);
|
137 |
+
}
|
138 |
+
|
139 |
+
gradio-app {
|
140 |
+
background: rgb(24, 24, 27);
|
141 |
+
}
|
142 |
+
|
143 |
+
|
144 |
+
.sidebar {
|
145 |
+
background: rgb(31, 31, 35);
|
146 |
+
border-right: 1px solid rgb(41, 41, 41);
|
147 |
+
}
|
148 |
+
"""
|
149 |
+
|
150 |
+
with gr.Blocks(css=custom_css) as demo:
|
151 |
+
with gr.Row(elem_classes="app-container"):
|
152 |
+
with gr.Column():
|
153 |
+
input_image = gr.Image(label="Image", type="filepath")
|
154 |
+
negative_image = gr.Image(label="Negative_image", type="filepath")
|
155 |
+
submit_btn = gr.Button("Submit")
|
156 |
+
|
157 |
+
with gr.Column():
|
158 |
+
prompt = gr.Textbox(label="Prompt")
|
159 |
+
neg_prompt = gr.Textbox(label="Neg Prompt")
|
160 |
+
steps = gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps")
|
161 |
+
use_lora = gr.Checkbox(label="Use LORA", value=True)
|
162 |
+
lora_path = gr.Textbox(label="LoraPath", value="XLabs-AI/flux-lora-collection")
|
163 |
+
lora_name = gr.Textbox(label="LoraName", value="realism_lora.safetensors")
|
164 |
+
lora_weight = gr.Slider(step=0.1, minimum=0, maximum=1, value=0.7, label="Lora Weight")
|
165 |
+
controlnet = gr.Checkbox(label="Use Controlnet(by default uses canny)", value=True)
|
166 |
+
use_ip = gr.Checkbox(label="Use IP")
|
167 |
+
use_depth = gr.Checkbox(label="Use depth")
|
168 |
+
use_hed = gr.Checkbox(label="Use hed")
|
169 |
+
true_gs = gr.Slider(step=0.1, minimum=0, maximum=10, value=3.5, label="TrueGs")
|
170 |
+
guidance = gr.Slider(minimum=1, maximum=10, value=4, label="Guidance")
|
171 |
+
cfg = gr.Slider(minimum=1, maximum=10, value=1, label="CFG")
|
172 |
+
|
173 |
+
with gr.Column():
|
174 |
+
output = gr.Gallery(label="Galery output", elem_classes="galery", selected_index=0)
|
175 |
+
|
176 |
+
submit_btn.click(process_image, inputs=[input_image, prompt, steps, use_lora, controlnet, use_depth, use_hed, use_ip, lora_name, lora_path, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg], outputs=output)
|
177 |
+
|
178 |
+
demo.launch(share=True)
|
flux
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 9e1dd391b2316b1cfc20e523e2885fd30134a2e4
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.30.1
|
2 |
+
deepspeed==0.14.4
|
3 |
+
einops==0.8.0
|
4 |
+
transformers==4.43.3
|
5 |
+
huggingface-hub==0.24.5
|
6 |
+
optimum-quanto
|
7 |
+
datasets
|
8 |
+
omegaconf
|
9 |
+
diffusers
|
10 |
+
sentencepiece
|
11 |
+
opencv-python
|
12 |
+
matplotlib
|
13 |
+
onnxruntime
|
14 |
+
torchvision
|
15 |
+
timm
|