Spaces:
Sleeping
Sleeping
import os | |
import random | |
import numpy as np | |
import gradio as gr | |
import spaces | |
import torch | |
import supervision as sv | |
from PIL import Image | |
from typing import Optional, Tuple | |
from diffusers import FluxInpaintPipeline | |
from utils.florence import load_florence_model, run_florence_inference, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK | |
from utils.sam import load_sam_image_model, run_sam_inference | |
# Set up device and environment | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# Load models | |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE) | |
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE) | |
FLUX_PIPE = FluxInpaintPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE) | |
# Set up CUDA optimizations | |
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() | |
if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
def resize_image_dimensions( | |
original_resolution_wh: Tuple[int, int], | |
maximum_dimension: int = 2048 | |
) -> Tuple[int, int]: | |
width, height = original_resolution_wh | |
if width <= maximum_dimension and height <= maximum_dimension: | |
width = width - (width % 32) | |
height = height - (height % 32) | |
return width, height | |
if width > height: | |
scaling_factor = maximum_dimension / width | |
else: | |
scaling_factor = maximum_dimension / height | |
new_width = int(width * scaling_factor) | |
new_height = int(height * scaling_factor) | |
new_width = new_width - (new_width % 32) | |
new_height = new_height - (new_height % 32) | |
return new_width, new_height | |
def process_image( | |
image_input, | |
segmentation_text, | |
inpaint_text, | |
seed_slicer: int, | |
randomize_seed: bool, | |
strength: float, | |
num_inference_steps: int, | |
progress=gr.Progress(track_tqdm=True) | |
) -> Optional[Image.Image]: | |
if not image_input: | |
gr.Info("Please upload an image.") | |
return None, None | |
if not segmentation_text: | |
gr.Info("Please enter a text prompt for segmentation.") | |
return None, None | |
if not inpaint_text: | |
gr.Info("Please enter a text prompt for inpainting.") | |
return None, None | |
# Florence-SAM segmentation | |
_, result = run_florence_inference( | |
model=FLORENCE_MODEL, | |
processor=FLORENCE_PROCESSOR, | |
device=DEVICE, | |
image=image_input, | |
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK, | |
text=segmentation_text | |
) | |
detections = sv.Detections.from_lmm( | |
lmm=sv.LMM.FLORENCE_2, | |
result=result, | |
resolution_wh=image_input.size | |
) | |
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections) | |
if len(detections) == 0: | |
gr.Info("No objects detected.") | |
return None, None | |
mask = Image.fromarray(detections.mask[0].astype("uint8") * 255) | |
# Resize images for FLUX | |
width, height = resize_image_dimensions(original_resolution_wh=image_input.size) | |
resized_image = image_input.resize((width, height), Image.LANCZOS) | |
resized_mask = mask.resize((width, height), Image.NEAREST) | |
# FLUX inpainting | |
if randomize_seed: | |
seed_slicer = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed_slicer) | |
result = FLUX_PIPE( | |
prompt=inpaint_text, | |
image=resized_image, | |
mask_image=resized_mask, | |
width=width, | |
height=height, | |
strength=strength, | |
generator=generator, | |
num_inference_steps=num_inference_steps | |
).images[0] | |
return result, resized_mask | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# MonsterAPI Prompt Guided Inpainting") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image( | |
label='Upload image', | |
type='pil', | |
image_mode='RGB', | |
) | |
segmentation_text = gr.Textbox( | |
label='Segmentation text prompt', | |
placeholder='Enter text for segmentation' | |
) | |
inpaint_text = gr.Textbox( | |
label='Inpainting text prompt', | |
placeholder='Enter text for inpainting' | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed_slicer = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
strength = gr.Slider( | |
label="Strength", | |
minimum=0, | |
maximum=1, | |
step=0.01, | |
value=0.75, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=20, | |
) | |
submit_button = gr.Button(value='Process', variant='primary') | |
with gr.Column(): | |
output_image = gr.Image(label='Output image') | |
with gr.Accordion("Generated Mask", open=False): | |
output_mask = gr.Image(label='Segmentation mask') | |
submit_button.click( | |
fn=process_image, | |
inputs=[ | |
image_input, | |
segmentation_text, | |
inpaint_text, | |
seed_slicer, | |
randomize_seed, | |
strength, | |
num_inference_steps | |
], | |
outputs=[output_image, output_mask] | |
) | |
demo.launch(debug=True, show_error=True, server_name="0.0.0.0",share=True) |