feat: add model and ptl training loop
Browse files- detector/model.py +170 -0
detector/model.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchmetrics
|
2 |
+
from . import config
|
3 |
+
|
4 |
+
from typing import Tuple, Dict, List, Any
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torchvision
|
9 |
+
import torch.nn as nn
|
10 |
+
import pytorch_lightning as ptl
|
11 |
+
|
12 |
+
|
13 |
+
class ResNet18Regressor(nn.Module):
|
14 |
+
def __init__(self):
|
15 |
+
super().__init__()
|
16 |
+
self.model = torchvision.models.resnet18(pretrained=False)
|
17 |
+
self.model.fc = nn.Linear(512, config.FONT_COUNT + 12)
|
18 |
+
|
19 |
+
def forward(self, X):
|
20 |
+
X = self.model(X)
|
21 |
+
# [0, 1]
|
22 |
+
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
|
23 |
+
return X
|
24 |
+
|
25 |
+
|
26 |
+
class FontDetectorLoss(nn.Module):
|
27 |
+
def __init__(self, lambda_font, lambda_direction, lambda_regression):
|
28 |
+
super().__init__()
|
29 |
+
self.category_loss = nn.CrossEntropyLoss()
|
30 |
+
self.regression_loss = nn.MSELoss()
|
31 |
+
self.lambda_font = lambda_font
|
32 |
+
self.lambda_direction = lambda_direction
|
33 |
+
self.lambda_regression = lambda_regression
|
34 |
+
|
35 |
+
def forward(self, y_hat, y):
|
36 |
+
font_cat = self.category_loss(y_hat[..., : config.FONT_COUNT], y[..., 0].long())
|
37 |
+
direction_cat = self.category_loss(
|
38 |
+
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1].long()
|
39 |
+
)
|
40 |
+
regression = self.regression_loss(
|
41 |
+
y_hat[..., config.FONT_COUNT + 2 :], y[..., 2:]
|
42 |
+
)
|
43 |
+
return (
|
44 |
+
self.lambda_font * font_cat
|
45 |
+
+ self.lambda_direction * direction_cat
|
46 |
+
+ self.lambda_regression * regression
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
class CosineWarmupScheduler(torch.optim.lr_scheduler._LRScheduler):
|
51 |
+
def __init__(self, optimizer, warmup, max_iters):
|
52 |
+
self.warmup = warmup
|
53 |
+
self.max_num_iters = max_iters
|
54 |
+
super().__init__(optimizer)
|
55 |
+
|
56 |
+
def get_lr(self):
|
57 |
+
lr_factor = self.get_lr_factor(epoch=self.last_epoch)
|
58 |
+
return [base_lr * lr_factor for base_lr in self.base_lrs]
|
59 |
+
|
60 |
+
def get_lr_factor(self, epoch):
|
61 |
+
lr_factor = 0.5 * (1 + np.cos(np.pi * epoch / self.max_num_iters))
|
62 |
+
if epoch <= self.warmup:
|
63 |
+
lr_factor *= epoch * 1.0 / self.warmup
|
64 |
+
return lr_factor
|
65 |
+
|
66 |
+
|
67 |
+
class FontDetector(ptl.LightningModule):
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
model: nn.Module,
|
71 |
+
lambda_font: float,
|
72 |
+
lambda_direction: float,
|
73 |
+
lambda_regression: float,
|
74 |
+
lr: float,
|
75 |
+
betas: Tuple[float, float],
|
76 |
+
num_warmup_iters: int,
|
77 |
+
num_iters: int,
|
78 |
+
):
|
79 |
+
super().__init__()
|
80 |
+
self.model = model
|
81 |
+
self.loss = FontDetectorLoss(lambda_font, lambda_direction, lambda_regression)
|
82 |
+
self.font_accur_train = torchmetrics.Accuracy(
|
83 |
+
task="multiclass", num_classes=config.FONT_COUNT
|
84 |
+
)
|
85 |
+
self.direction_accur_train = torchmetrics.Accuracy(
|
86 |
+
task="multiclass", num_classes=2
|
87 |
+
)
|
88 |
+
self.font_accur_val = torchmetrics.Accuracy(
|
89 |
+
task="multiclass", num_classes=config.FONT_COUNT
|
90 |
+
)
|
91 |
+
self.direction_accur_val = torchmetrics.Accuracy(
|
92 |
+
task="multiclass", num_classes=2
|
93 |
+
)
|
94 |
+
self.lr = lr
|
95 |
+
self.betas = betas
|
96 |
+
self.num_warmup_iters = num_warmup_iters
|
97 |
+
self.num_iters = num_iters
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
return self.model(x)
|
101 |
+
|
102 |
+
def training_step(
|
103 |
+
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
|
104 |
+
) -> Dict[str, Any]:
|
105 |
+
X, y = batch
|
106 |
+
y_hat = self.forward(X)
|
107 |
+
loss = self.loss(y_hat, y)
|
108 |
+
self.log("train_loss", loss, prog_bar=True)
|
109 |
+
return {"loss": loss, "pred": y_hat, "target": y}
|
110 |
+
|
111 |
+
def training_step_end(self, outputs):
|
112 |
+
y_hat = outputs["pred"]
|
113 |
+
y = outputs["target"]
|
114 |
+
self.log(
|
115 |
+
"train_font_accur",
|
116 |
+
self.font_accur_train(y_hat[..., : config.FONT_COUNT], y[..., 0]),
|
117 |
+
)
|
118 |
+
self.log(
|
119 |
+
"train_direction_accur",
|
120 |
+
self.direction_accur_train(
|
121 |
+
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
|
122 |
+
),
|
123 |
+
)
|
124 |
+
|
125 |
+
def training_epoch_end(self, outputs) -> None:
|
126 |
+
self.font_accur_train.reset()
|
127 |
+
self.direction_accur_train.reset()
|
128 |
+
|
129 |
+
def validation_step(
|
130 |
+
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
|
131 |
+
) -> Dict[str, Any]:
|
132 |
+
X, y = batch
|
133 |
+
y_hat = self.forward(X)
|
134 |
+
loss = self.loss(y_hat, y)
|
135 |
+
self.log("val_loss", loss, prog_bar=True)
|
136 |
+
self.font_accur_val.update(y_hat[..., : config.FONT_COUNT], y[..., 0])
|
137 |
+
self.direction_accur_val.update(
|
138 |
+
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
|
139 |
+
)
|
140 |
+
return {"loss": loss, "pred": y_hat, "target": y}
|
141 |
+
|
142 |
+
def validation_epoch_end(self, outputs):
|
143 |
+
self.log("val_font_accur", self.font_accur_val.compute())
|
144 |
+
self.log("val_direction_accur", self.direction_accur_val.compute())
|
145 |
+
self.font_accur_val.reset()
|
146 |
+
self.direction_accur_val.reset()
|
147 |
+
|
148 |
+
def configure_optimizers(self):
|
149 |
+
optimizer = torch.optim.Adam(
|
150 |
+
self.model.parameters(), lr=self.lr, betas=self.betas
|
151 |
+
)
|
152 |
+
self.scheduler = CosineWarmupScheduler(
|
153 |
+
optimizer, self.num_warmup_iters, self.num_iters
|
154 |
+
)
|
155 |
+
return optimizer
|
156 |
+
|
157 |
+
def optimizer_step(
|
158 |
+
self,
|
159 |
+
epoch: int,
|
160 |
+
batch_idx: int,
|
161 |
+
optimizer,
|
162 |
+
optimizer_idx: int = 0,
|
163 |
+
*args,
|
164 |
+
**kwargs
|
165 |
+
):
|
166 |
+
super().optimizer_step(
|
167 |
+
epoch, batch_idx, optimizer, optimizer_idx, *args, **kwargs
|
168 |
+
)
|
169 |
+
self.log("lr", self.scheduler.get_last_lr()[0])
|
170 |
+
self.scheduler.step()
|