Spaces:
Runtime error
Runtime error
from funasr_onnx import Fsmn_vad, Paraformer, CT_Transformer | |
from transcribe import get_models, transcribe | |
import soundfile | |
import gradio as gr | |
import pytube as pt | |
import datetime | |
import os | |
asr_model, vad_model, punc_model = get_models("./models") | |
def convert_to_wav(in_filename: str) -> str: | |
"""Convert the input audio file to a wave file""" | |
out_filename = in_filename + ".wav" | |
if '.mp3' in in_filename: | |
_ = os.system(f"ffmpeg -y -i '{in_filename}' -acodec pcm_s16le -ac 1 -ar 16000 '{out_filename}'") | |
else: | |
_ = os.system(f"ffmpeg -hide_banner -y -i '{in_filename}' -ar 16000 '{out_filename}'") | |
speech, _ = soundfile.read(out_filename) | |
print(f"load speech shape {speech.shape}") | |
return speech | |
def file_transcribe(microphone, file_upload): | |
warn_output = "" | |
if (microphone is not None) and (file_upload is not None): | |
warn_output = ( | |
"WARNING: You've uploaded an audio file and used the microphone. " | |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
) | |
elif (microphone is None) and (file_upload is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
file = microphone if microphone is not None else file_upload | |
speech = convert_to_wav(file) | |
items = [] | |
vad_model.vad_scorer.AllResetDetection() | |
for item in transcribe(speech, asr_model, vad_model, punc_model): | |
items.append(item) | |
print(item) | |
text = "\n".join(items) | |
return warn_output + text | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def youtube_transcribe(yt_url): | |
yt = pt.YouTube(yt_url) | |
html_embed_str = _return_yt_html_embed(yt_url) | |
stream = yt.streams.filter(only_audio=True)[0] | |
filename = f"audio.mp3" | |
stream.download(filename=filename) | |
speech=convert_to_wav(filename) | |
items = [] | |
vad_model.vad_scorer.AllResetDetection() | |
for item in transcribe(speech, asr_model, vad_model, punc_model): | |
items.append(item) | |
print(item) | |
text = "\n".join(items) | |
os.system(f"rm -rf audio.mp3 audio.mp3.wav") | |
return html_embed_str, text | |
def run(): | |
gr.close_all() | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=file_transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
gr.inputs.Audio(source="upload", type="filepath", optional=True), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="ParaformerX: Copilot for Audio", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the pretrained paraformer model to transcribe audio files of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=youtube_transcribe, | |
inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")], | |
outputs=["html", "text"], | |
layout="horizontal", | |
theme="huggingface", | |
title="Demo: Transcribe YouTube", | |
description=( | |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the pretrained paraformer model to transcribe audio files of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) | |
demo.launch(server_name="0.0.0.0", server_port=7860, enable_queue=True) | |
if __name__ == "__main__": | |
run() |