Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
File size: 3,600 Bytes
a8ede2f dc1ba50 a8ede2f 717e20e a8ede2f 717e20e dd383e8 dc1ba50 dd383e8 a8ede2f dc1ba50 a8ede2f 717e20e 952a5e1 a8ede2f 241e347 a8ede2f dc1ba50 a8ede2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.filter_models import filter_models
from src.leaderboard.read_evals import get_raw_eval_results, EvalResult
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> tuple[list[EvalResult], pd.DataFrame]:
# Returns a list of EvalResult
# raw_data[0]:
# EvalResult(eval_name='EleutherAI_pythia-1.3b_torch.float16', full_model='EleutherAI/pythia-1.3b', org='EleutherAI', model='pythia-1.3b', revision='34b668ff0acfe56f2d541aa46b385557ee39eb3f', results={'arc:challenge': 31.14334470989761, 'hellaswag': 51.43397729535949, 'hendrycksTest': 26.55151159544371, 'truthfulqa:mc': 39.24322830092449, 'winogrande': 57.37963693764798, 'gsm8k': 0.9855951478392722, 'drop': 4.056312919463095}, precision='torch.float16', model_type=<ModelType.PT: ModelTypeDetails(name='pretrained', symbol='🟢')>, weight_type='Original', architecture='GPTNeoXForCausalLM', license='apache-2.0', likes=7, num_params=1.312, date='2023-09-09T10:52:17Z', still_on_hub=True)
# EvalResult and get_raw_eval_results are defined in ./src/leaderboard/read_evals.py, the results slots are not hardcoded
raw_data = get_raw_eval_results(results_path, requests_path)
all_data_json = [v.to_dict() for v in raw_data]
# all_data_json.append(baseline_row)
filter_models(all_data_json)
df = pd.DataFrame.from_records(all_data_json)
if AutoEvalColumn.average.name in df:
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
df = df[cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return raw_data, df
def get_evaluation_queue_df(save_path: str, cols: list) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]
|