pminervini's picture
update
6dfea56
raw
history blame
6.75 kB
import os
from typing import Union, List
from lm_eval.api.task import ConfigurableTask
from lm_eval.api.instance import Instance
# from lm_eval.api.registry import register_task
from lm_eval.api.metrics import mean
from src.backend.envs import DEVICE
import spacy
from selfcheckgpt.modeling_selfcheck import SelfCheckMQAG, SelfCheckNLI, SelfCheckBERTScore, SelfCheckNgram
# @register_task("selfcheckgpt")
class SelfCheckGPT(ConfigurableTask):
VERSION = 0.0
DATASET_PATH = "potsawee/wiki_bio_gpt3_hallucination"
DATASET_NAME = None
OUTPUT_TYPE = 'generate_until'
def __init__(self):
super().__init__(config={'metadata': {'version': self.VERSION}})
# these end tokens are hard coded because of the current limitaion of the llm-eval.
self.generation_kwargs = {"until": ["\n\n", "<unk>", "<|im_end|>", "</s>"], "max_length": 512}
self.generation_kwargs_sampling_number = 5 # the number of sampling for self-consistence
self.generation_kwargs_sampling = {"temperature": 0.99, "do_sample": True, "until": ["\n\n", "<unk>", "<|im_end|>", "</s>"], "max_length": 512}
self.selfcheckgpt_type = os.environ.get('SELFCHECKGPTTYPE', 'SelfCheckNLI')
self.selfcheckgpt_device = os.environ.get('SELFCHECKGPTDEVICE', DEVICE)
self.selfcheckgpt_nlp = spacy.load("en_core_web_sm")
if self.selfcheckgpt_type == 'SelfCheckNgram':
self.selfcheckgpt = SelfCheckNgram(n=1)
elif self.selfcheckgpt_type == 'SelfCheckBERTScore':
self.selfcheckgpt = SelfCheckBERTScore(rescale_with_baseline=True)
elif self.selfcheckgpt_type == 'SelfCheckMQAG':
self.selfcheckgpt = SelfCheckMQAG(device=self.selfcheckgpt_device)
elif self.selfcheckgpt_type == 'SelfCheckNLI':
self.selfcheckgpt = SelfCheckNLI(device=self.selfcheckgpt_device)
self.SelfCheckNLI_error_cnt = 0
def has_training_docs(self):
return False
def has_validation_docs(self):
return True
def has_test_docs(self):
return False
def validation_docs(self):
return self.dataset["evaluation"]
def doc_to_text(self, doc):
doc_text = doc["wiki_bio_text"]
doc_text = doc_text.split()
doc_text = " ".join(doc_text[:5])
# prompt = f"This is a passage from Wikipedia about {context}:\n\n"
doc_text = f"Please generate a Wikipedia passage starting with: {doc_text}\n"
return doc_text
def doc_to_target(self, doc):
answer = doc['wiki_bio_text']
return answer
def construct_requests(self, doc: dict, ctx: str, **kwargs) -> Union[List[Instance], Instance]:
arguments = (ctx, self.generation_kwargs)
request_list = [
Instance(request_type='generate_until', doc=doc, arguments=arguments, idx=0, **kwargs),
]
sampling_arguments = (ctx, self.generation_kwargs_sampling)
request_list.extend([
Instance(request_type='generate_until', doc=doc, arguments=sampling_arguments, idx=idx, **kwargs)
for idx in range(1, self.generation_kwargs_sampling_number+1)
]
)
return request_list
def process_results(self, doc, results):
response_temperature_0 = results[0]
other_responses = results[1:]
passage = self.doc_to_target(doc)
sentences = self.selfcheckgpt_nlp(response_temperature_0)
sentences = [sent.text.strip() for sent in sentences.sents]
if self.selfcheckgpt_type == 'SelfCheckNgram':
selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, passage=response_temperature_0, sampled_passages=other_responses)
return {
'avg-selfcheckgpt': selfcheckgpt_scores['doc_level']['avg_neg_logprob'],
'max-selfcheckgpt': selfcheckgpt_scores['doc_level']['avg_max_neg_logprob']
}
elif self.selfcheckgpt_type == 'SelfCheckBERTScore':
selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, sampled_passages=other_responses)
elif self.selfcheckgpt_type == 'SelfCheckMQAG':
selfcheckgpt_scores = self.selfcheckgpt.predict(
sentences=sentences,
passage=response_temperature_0,
sampled_passages=other_responses,
num_questions_per_sent=5, # number of questions to be drawn
scoring_method='bayes_with_alpha', # options = 'counting', 'bayes', 'bayes_with_alpha'
beta1=0.8, beta2=0.8) # additional params depending on scoring_method
elif self.selfcheckgpt_type == 'SelfCheckNLI':
selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, sampled_passages=other_responses)
if len(selfcheckgpt_scores) == 0:
self.SelfCheckNLI_error_cnt += 1
print(f"SelfCheckNLI Warning.SelfCheckNLI_error_cnt:{self.SelfCheckNLI_error_cnt}. This instance is marked as hallucinated with 0.0.")
result = {
'avg-selfcheckgpt': 0.0,
'max-selfcheckgpt': 0.0
}
else:
threshold = 0.6 # https://huggingface.co/blog/dhuynh95/automatic-hallucination-detection
# passage is hallucianted if one sentence is hallucinated. It's very strict.
selfcheckgpt_scores_max = 0.0 if max(selfcheckgpt_scores) > threshold else 1.0
# passage is hallucianted if average score of all sentences is hallucinated.
selfcheckgpt_scores_avg = 0.0 if sum(selfcheckgpt_scores) / len(selfcheckgpt_scores) > threshold else 1.0
result = {'avg-selfcheckgpt': selfcheckgpt_scores_avg, 'max-selfcheckgpt': selfcheckgpt_scores_max}
return result
selfcheckgpt_scores_avg = sum(selfcheckgpt_scores) / len(selfcheckgpt_scores) if len(selfcheckgpt_scores) > 0 else 0
selfcheckgpt_scores_max = max(selfcheckgpt_scores)
return {'avg-selfcheckgpt': selfcheckgpt_scores_avg, 'max-selfcheckgpt': selfcheckgpt_scores_max}
def aggregation(self):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
return {k: mean for k in ["avg-selfcheckgpt", "max-selfcheckgpt"]}
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
return {k: True for k in ["avg-selfcheckgpt", "max-selfcheckgpt"]}