Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import pipeline
|
3 |
+
from datasets import load_dataset
|
4 |
+
from datasets import Audio
|
5 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
6 |
+
|
7 |
+
|
8 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
+
pipe = pipeline(
|
10 |
+
"automatic-speech-recognition", model="openai/whisper-base", device=device
|
11 |
+
)
|
12 |
+
|
13 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
14 |
+
|
15 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
16 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
17 |
+
|
18 |
+
|
19 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
20 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
21 |
+
|
22 |
+
def translate(audio):
|
23 |
+
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate","language": "fr"})
|
24 |
+
return outputs["text"]
|
25 |
+
|
26 |
+
def synthesise(text):
|
27 |
+
inputs = processor(text=text, return_tensors="pt")
|
28 |
+
speech = model.generate_speech(
|
29 |
+
inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder
|
30 |
+
)
|
31 |
+
return speech.cpu()
|
32 |
+
|
33 |
+
import numpy as np
|
34 |
+
|
35 |
+
target_dtype = np.int16
|
36 |
+
max_range = np.iinfo(target_dtype).max
|
37 |
+
|
38 |
+
|
39 |
+
def speech_to_speech_translation(audio):
|
40 |
+
translated_text = translate(audio)
|
41 |
+
print(f"{translated_text}")
|
42 |
+
synthesised_speech = synthesise(translated_text)
|
43 |
+
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
|
44 |
+
return 16000, synthesised_speech
|
45 |
+
|
46 |
+
import gradio as gr
|
47 |
+
|
48 |
+
demo = gr.Blocks()
|
49 |
+
|
50 |
+
mic_translate = gr.Interface(
|
51 |
+
fn=speech_to_speech_translation,
|
52 |
+
inputs=gr.Audio(sources= ["microphone","upload"], type="filepath"),
|
53 |
+
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
54 |
+
)
|
55 |
+
|
56 |
+
file_translate = gr.Interface(
|
57 |
+
fn=speech_to_speech_translation,
|
58 |
+
inputs=gr.Audio(sources=["upload"], type="filepath"),
|
59 |
+
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
60 |
+
)
|
61 |
+
|
62 |
+
with demo:
|
63 |
+
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
64 |
+
|
65 |
+
demo.launch()
|