File size: 21,276 Bytes
238273a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
from __future__ import annotations
from typing import TYPE_CHECKING, List

import logging
import json
import commentjson as cjson
import os
import sys
import requests
import urllib3
import traceback

from tqdm import tqdm
import colorama
from duckduckgo_search import ddg
import asyncio
import aiohttp
from enum import Enum

from .presets import *
from .llama_func import *
from .utils import *
from . import shared
from .config import retrieve_proxy


class ModelType(Enum):
    Unknown = -1
    OpenAI = 0
    ChatGLM = 1
    LLaMA = 2
    XMChat = 3

    @classmethod
    def get_type(cls, model_name: str):
        model_type = None
        model_name_lower = model_name.lower()
        if "gpt" in model_name_lower:
            model_type = ModelType.OpenAI
        elif "chatglm" in model_name_lower:
            model_type = ModelType.ChatGLM
        elif "llama" in model_name_lower or "alpaca" in model_name_lower:
            model_type = ModelType.LLaMA
        elif "xmchat" in model_name_lower:
            model_type = ModelType.XMChat
        else:
            model_type = ModelType.Unknown
        return model_type


class BaseLLMModel:
    def __init__(
        self,
        model_name,
        system_prompt="",
        temperature=1.0,
        top_p=1.0,
        n_choices=1,
        stop=None,
        max_generation_token=None,
        presence_penalty=0,
        frequency_penalty=0,
        logit_bias=None,
        user="",
    ) -> None:
        self.history = []
        self.all_token_counts = []
        self.model_name = model_name
        self.model_type = ModelType.get_type(model_name)
        try:
            self.token_upper_limit = MODEL_TOKEN_LIMIT[model_name]
        except KeyError:
            self.token_upper_limit = DEFAULT_TOKEN_LIMIT
        self.interrupted = False
        self.system_prompt = system_prompt
        self.api_key = None
        self.need_api_key = False
        self.single_turn = False

        self.temperature = temperature
        self.top_p = top_p
        self.n_choices = n_choices
        self.stop_sequence = stop
        self.max_generation_token = None
        self.presence_penalty = presence_penalty
        self.frequency_penalty = frequency_penalty
        self.logit_bias = logit_bias
        self.user_identifier = user

    def get_answer_stream_iter(self):
        """stream predict, need to be implemented
        conversations are stored in self.history, with the most recent question, in OpenAI format
        should return a generator, each time give the next word (str) in the answer
        """
        logging.warning("stream predict not implemented, using at once predict instead")
        response, _ = self.get_answer_at_once()
        yield response

    def get_answer_at_once(self):
        """predict at once, need to be implemented
        conversations are stored in self.history, with the most recent question, in OpenAI format
        Should return:
        the answer (str)
        total token count (int)
        """
        logging.warning("at once predict not implemented, using stream predict instead")
        response_iter = self.get_answer_stream_iter()
        count = 0
        for response in response_iter:
            count += 1
        return response, sum(self.all_token_counts) + count

    def billing_info(self):
        """get billing infomation, inplement if needed"""
        logging.warning("billing info not implemented, using default")
        return BILLING_NOT_APPLICABLE_MSG

    def count_token(self, user_input):
        """get token count from input, implement if needed"""
        logging.warning("token count not implemented, using default")
        return len(user_input)

    def stream_next_chatbot(self, inputs, chatbot, fake_input=None, display_append=""):
        def get_return_value():
            return chatbot, status_text

        status_text = i18n("开始实时传输回答……")
        if fake_input:
            chatbot.append((fake_input, ""))
        else:
            chatbot.append((inputs, ""))

        user_token_count = self.count_token(inputs)
        self.all_token_counts.append(user_token_count)
        logging.debug(f"输入token计数: {user_token_count}")

        stream_iter = self.get_answer_stream_iter()

        for partial_text in stream_iter:
            chatbot[-1] = (chatbot[-1][0], partial_text + display_append)
            self.all_token_counts[-1] += 1
            status_text = self.token_message()
            yield get_return_value()
            if self.interrupted:
                self.recover()
                break
        self.history.append(construct_assistant(partial_text))

    def next_chatbot_at_once(self, inputs, chatbot, fake_input=None, display_append=""):
        if fake_input:
            chatbot.append((fake_input, ""))
        else:
            chatbot.append((inputs, ""))
        if fake_input is not None:
            user_token_count = self.count_token(fake_input)
        else:
            user_token_count = self.count_token(inputs)
        self.all_token_counts.append(user_token_count)
        ai_reply, total_token_count = self.get_answer_at_once()
        self.history.append(construct_assistant(ai_reply))
        if fake_input is not None:
            self.history[-2] = construct_user(fake_input)
        chatbot[-1] = (chatbot[-1][0], ai_reply + display_append)
        if fake_input is not None:
            self.all_token_counts[-1] += count_token(construct_assistant(ai_reply))
        else:
            self.all_token_counts[-1] = total_token_count - sum(self.all_token_counts)
        status_text = self.token_message()
        return chatbot, status_text

    def handle_file_upload(self, files, chatbot):
        """if the model accepts multi modal input, implement this function"""
        status = gr.Markdown.update()
        if files:
            construct_index(self.api_key, file_src=files)
            status = "索引构建完成"
        return gr.Files.update(), chatbot, status

    def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot):
        fake_inputs = None
        display_append = []
        limited_context = False
        fake_inputs = real_inputs
        if files:
            from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery
            from llama_index.indices.query.schema import QueryBundle
            from langchain.embeddings.huggingface import HuggingFaceEmbeddings
            from langchain.chat_models import ChatOpenAI
            from llama_index import (
                GPTSimpleVectorIndex,
                ServiceContext,
                LangchainEmbedding,
                OpenAIEmbedding,
            )
            limited_context = True
            msg = "加载索引中……"
            logging.info(msg)
            # yield chatbot + [(inputs, "")], msg
            index = construct_index(self.api_key, file_src=files)
            assert index is not None, "获取索引失败"
            msg = "索引获取成功,生成回答中……"
            logging.info(msg)
            if local_embedding or self.model_type != ModelType.OpenAI:
                embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2"))
            else:
                embed_model = OpenAIEmbedding()
            # yield chatbot + [(inputs, "")], msg
            with retrieve_proxy():
                prompt_helper = PromptHelper(
                    max_input_size=4096,
                    num_output=5,
                    max_chunk_overlap=20,
                    chunk_size_limit=600,
                )
                from llama_index import ServiceContext

                service_context = ServiceContext.from_defaults(
                    prompt_helper=prompt_helper, embed_model=embed_model
                )
                query_object = GPTVectorStoreIndexQuery(
                    index.index_struct,
                    service_context=service_context,
                    similarity_top_k=5,
                    vector_store=index._vector_store,
                    docstore=index._docstore,
                )
                query_bundle = QueryBundle(real_inputs)
                nodes = query_object.retrieve(query_bundle)
            reference_results = [n.node.text for n in nodes]
            reference_results = add_source_numbers(reference_results, use_source=False)
            display_append = add_details(reference_results)
            display_append = "\n\n" + "".join(display_append)
            real_inputs = (
                replace_today(PROMPT_TEMPLATE)
                .replace("{query_str}", real_inputs)
                .replace("{context_str}", "\n\n".join(reference_results))
                .replace("{reply_language}", reply_language)
            )
        elif use_websearch:
            limited_context = True
            search_results = ddg(real_inputs, max_results=5)
            reference_results = []
            for idx, result in enumerate(search_results):
                logging.debug(f"搜索结果{idx + 1}{result}")
                domain_name = urllib3.util.parse_url(result["href"]).host
                reference_results.append([result["body"], result["href"]])
                display_append.append(
                    # f"{idx+1}. [{domain_name}]({result['href']})\n"
                    f"<li><a href=\"{result['href']}\" target=\"_blank\">{domain_name}</a></li>\n"
                )
            reference_results = add_source_numbers(reference_results)
            display_append = "<ol>\n\n" + "".join(display_append) + "</ol>"
            real_inputs = (
                replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
                .replace("{query}", real_inputs)
                .replace("{web_results}", "\n\n".join(reference_results))
                .replace("{reply_language}", reply_language)
            )
        else:
            display_append = ""
        return limited_context, fake_inputs, display_append, real_inputs, chatbot

    def predict(
        self,
        inputs,
        chatbot,
        stream=False,
        use_websearch=False,
        files=None,
        reply_language="中文",
        should_check_token_count=True,
    ):  # repetition_penalty, top_k

        status_text = "开始生成回答……"
        logging.info(
            "输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL
        )
        if should_check_token_count:
            yield chatbot + [(inputs, "")], status_text
        if reply_language == "跟随问题语言(不稳定)":
            reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."

        limited_context, fake_inputs, display_append, inputs, chatbot = self.prepare_inputs(real_inputs=inputs, use_websearch=use_websearch, files=files, reply_language=reply_language, chatbot=chatbot)
        yield chatbot + [(fake_inputs, "")], status_text

        if (
            self.need_api_key and
            self.api_key is None
            and not shared.state.multi_api_key
        ):
            status_text = STANDARD_ERROR_MSG + NO_APIKEY_MSG
            logging.info(status_text)
            chatbot.append((inputs, ""))
            if len(self.history) == 0:
                self.history.append(construct_user(inputs))
                self.history.append("")
                self.all_token_counts.append(0)
            else:
                self.history[-2] = construct_user(inputs)
            yield chatbot + [(inputs, "")], status_text
            return
        elif len(inputs.strip()) == 0:
            status_text = STANDARD_ERROR_MSG + NO_INPUT_MSG
            logging.info(status_text)
            yield chatbot + [(inputs, "")], status_text
            return

        if self.single_turn:
            self.history = []
            self.all_token_counts = []
        self.history.append(construct_user(inputs))

        try:
            if stream:
                logging.debug("使用流式传输")
                iter = self.stream_next_chatbot(
                    inputs,
                    chatbot,
                    fake_input=fake_inputs,
                    display_append=display_append,
                )
                for chatbot, status_text in iter:
                    yield chatbot, status_text
            else:
                logging.debug("不使用流式传输")
                chatbot, status_text = self.next_chatbot_at_once(
                    inputs,
                    chatbot,
                    fake_input=fake_inputs,
                    display_append=display_append,
                )
                yield chatbot, status_text
        except Exception as e:
            traceback.print_exc()
            status_text = STANDARD_ERROR_MSG + str(e)
            yield chatbot, status_text

        if len(self.history) > 1 and self.history[-1]["content"] != inputs:
            logging.info(
                "回答为:"
                + colorama.Fore.BLUE
                + f"{self.history[-1]['content']}"
                + colorama.Style.RESET_ALL
            )

        if limited_context:
            # self.history = self.history[-4:]
            # self.all_token_counts = self.all_token_counts[-2:]
            self.history = []
            self.all_token_counts = []

        max_token = self.token_upper_limit - TOKEN_OFFSET

        if sum(self.all_token_counts) > max_token and should_check_token_count:
            count = 0
            while (
                sum(self.all_token_counts)
                > self.token_upper_limit * REDUCE_TOKEN_FACTOR
                and sum(self.all_token_counts) > 0
            ):
                count += 1
                del self.all_token_counts[0]
                del self.history[:2]
            logging.info(status_text)
            status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话"
            yield chatbot, status_text

    def retry(
        self,
        chatbot,
        stream=False,
        use_websearch=False,
        files=None,
        reply_language="中文",
    ):
        logging.debug("重试中……")
        if len(self.history) > 0:
            inputs = self.history[-2]["content"]
            del self.history[-2:]
            self.all_token_counts.pop()
        elif len(chatbot) > 0:
            inputs = chatbot[-1][0]
        else:
            yield chatbot, f"{STANDARD_ERROR_MSG}上下文是空的"
            return

        iter = self.predict(
            inputs,
            chatbot,
            stream=stream,
            use_websearch=use_websearch,
            files=files,
            reply_language=reply_language,
        )
        for x in iter:
            yield x
        logging.debug("重试完毕")

    # def reduce_token_size(self, chatbot):
    #     logging.info("开始减少token数量……")
    #     chatbot, status_text = self.next_chatbot_at_once(
    #         summarize_prompt,
    #         chatbot
    #     )
    #     max_token_count = self.token_upper_limit * REDUCE_TOKEN_FACTOR
    #     num_chat = find_n(self.all_token_counts, max_token_count)
    #     logging.info(f"previous_token_count: {self.all_token_counts}, keeping {num_chat} chats")
    #     chatbot = chatbot[:-1]
    #     self.history = self.history[-2*num_chat:] if num_chat > 0 else []
    #     self.all_token_counts = self.all_token_counts[-num_chat:] if num_chat > 0 else []
    #     msg = f"保留了最近{num_chat}轮对话"
    #     logging.info(msg)
    #     logging.info("减少token数量完毕")
    #     return chatbot, msg + "," + self.token_message(self.all_token_counts if len(self.all_token_counts) > 0 else [0])

    def interrupt(self):
        self.interrupted = True

    def recover(self):
        self.interrupted = False

    def set_token_upper_limit(self, new_upper_limit):
        self.token_upper_limit = new_upper_limit
        print(f"token上限设置为{new_upper_limit}")

    def set_temperature(self, new_temperature):
        self.temperature = new_temperature

    def set_top_p(self, new_top_p):
        self.top_p = new_top_p

    def set_n_choices(self, new_n_choices):
        self.n_choices = new_n_choices

    def set_stop_sequence(self, new_stop_sequence: str):
        new_stop_sequence = new_stop_sequence.split(",")
        self.stop_sequence = new_stop_sequence

    def set_max_tokens(self, new_max_tokens):
        self.max_generation_token = new_max_tokens

    def set_presence_penalty(self, new_presence_penalty):
        self.presence_penalty = new_presence_penalty

    def set_frequency_penalty(self, new_frequency_penalty):
        self.frequency_penalty = new_frequency_penalty

    def set_logit_bias(self, logit_bias):
        logit_bias = logit_bias.split()
        bias_map = {}
        encoding = tiktoken.get_encoding("cl100k_base")
        for line in logit_bias:
            word, bias_amount = line.split(":")
            if word:
                for token in encoding.encode(word):
                    bias_map[token] = float(bias_amount)
        self.logit_bias = bias_map

    def set_user_identifier(self, new_user_identifier):
        self.user_identifier = new_user_identifier

    def set_system_prompt(self, new_system_prompt):
        self.system_prompt = new_system_prompt

    def set_key(self, new_access_key):
        self.api_key = new_access_key.strip()
        msg = i18n("API密钥更改为了") + hide_middle_chars(self.api_key)
        logging.info(msg)
        return self.api_key, msg

    def set_single_turn(self, new_single_turn):
        self.single_turn = new_single_turn

    def reset(self):
        self.history = []
        self.all_token_counts = []
        self.interrupted = False
        return [], self.token_message([0])

    def delete_first_conversation(self):
        if self.history:
            del self.history[:2]
            del self.all_token_counts[0]
        return self.token_message()

    def delete_last_conversation(self, chatbot):
        if len(chatbot) > 0 and STANDARD_ERROR_MSG in chatbot[-1][1]:
            msg = "由于包含报错信息,只删除chatbot记录"
            chatbot.pop()
            return chatbot, self.history
        if len(self.history) > 0:
            self.history.pop()
            self.history.pop()
        if len(chatbot) > 0:
            msg = "删除了一组chatbot对话"
            chatbot.pop()
        if len(self.all_token_counts) > 0:
            msg = "删除了一组对话的token计数记录"
            self.all_token_counts.pop()
        msg = "删除了一组对话"
        return chatbot, msg

    def token_message(self, token_lst=None):
        if token_lst is None:
            token_lst = self.all_token_counts
        token_sum = 0
        for i in range(len(token_lst)):
            token_sum += sum(token_lst[: i + 1])
        return i18n("Token 计数: ") + f"{sum(token_lst)}" + i18n(",本次对话累计消耗了 ") + f"{token_sum} tokens"

    def save_chat_history(self, filename, chatbot, user_name):
        if filename == "":
            return
        if not filename.endswith(".json"):
            filename += ".json"
        return save_file(filename, self.system_prompt, self.history, chatbot, user_name)

    def export_markdown(self, filename, chatbot, user_name):
        if filename == "":
            return
        if not filename.endswith(".md"):
            filename += ".md"
        return save_file(filename, self.system_prompt, self.history, chatbot, user_name)

    def load_chat_history(self, filename, chatbot, user_name):
        logging.debug(f"{user_name} 加载对话历史中……")
        if type(filename) != str:
            filename = filename.name
        try:
            with open(os.path.join(HISTORY_DIR, user_name, filename), "r") as f:
                json_s = json.load(f)
            try:
                if type(json_s["history"][0]) == str:
                    logging.info("历史记录格式为旧版,正在转换……")
                    new_history = []
                    for index, item in enumerate(json_s["history"]):
                        if index % 2 == 0:
                            new_history.append(construct_user(item))
                        else:
                            new_history.append(construct_assistant(item))
                    json_s["history"] = new_history
                    logging.info(new_history)
            except:
                # 没有对话历史
                pass
            logging.debug(f"{user_name} 加载对话历史完毕")
            self.history = json_s["history"]
            return filename, json_s["system"], json_s["chatbot"]
        except FileNotFoundError:
            logging.warning(f"{user_name} 没有找到对话历史文件,不执行任何操作")
            return filename, self.system_prompt, chatbot

    def like(self):
        """like the last response, implement if needed
        """
        return gr.update()

    def dislike(self):
        """dislike the last response, implement if needed
        """
        return gr.update()