__all__ = ['is_cat', 'learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf'] # Cell from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # Cell learn = load_learner('ai-academy-group7/models/plant_or_flower_model.pkl') # Cell categories = ('Flower', 'Plant') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) # Cell image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['images/flower.jpg', 'images/plant.jpg', 'images/dunno.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)