File size: 13,460 Bytes
9ef8038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
from __future__ import division
import torch
import numpy as np
from PIL import Image
import torchvision.transforms.functional as F
import random
import cv2


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, sample):
        for t in self.transforms:
            sample = t(sample)
        return sample


class ToTensor(object):
    """Convert numpy array to torch tensor"""

    def __init__(self, no_normalize=False):
        self.no_normalize = no_normalize

    def __call__(self, sample):
        left = np.transpose(sample['left'], (2, 0, 1))  # [3, H, W]
        if self.no_normalize:
            sample['left'] = torch.from_numpy(left)
        else:
            sample['left'] = torch.from_numpy(left) / 255.
        right = np.transpose(sample['right'], (2, 0, 1))

        if self.no_normalize:
            sample['right'] = torch.from_numpy(right)
        else:
            sample['right'] = torch.from_numpy(right) / 255.

        # disp = np.expand_dims(sample['disp'], axis=0)  # [1, H, W]
        if 'disp' in sample.keys():
            disp = sample['disp']  # [H, W]
            sample['disp'] = torch.from_numpy(disp)

        return sample


class Normalize(object):
    """Normalize image, with type tensor"""

    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, sample):

        norm_keys = ['left', 'right']

        for key in norm_keys:
            # Images have converted to tensor, with shape [C, H, W]
            for t, m, s in zip(sample[key], self.mean, self.std):
                t.sub_(m).div_(s)

        return sample


class RandomCrop(object):
    def __init__(self, img_height, img_width):
        self.img_height = img_height
        self.img_width = img_width

    def __call__(self, sample):
        ori_height, ori_width = sample['left'].shape[:2]

        # pad zero when crop size is larger than original image size
        if self.img_height > ori_height or self.img_width > ori_width:

            # can be used for only pad one side
            top_pad = max(self.img_height - ori_height, 0)
            right_pad = max(self.img_width - ori_width, 0)

            # try edge padding
            sample['left'] = np.lib.pad(sample['left'],
                                        ((top_pad, 0), (0, right_pad), (0, 0)),
                                        mode='edge')
            sample['right'] = np.lib.pad(sample['right'],
                                         ((top_pad, 0), (0, right_pad), (0, 0)),
                                         mode='edge')

            if 'disp' in sample.keys():
                sample['disp'] = np.lib.pad(sample['disp'],
                                            ((top_pad, 0), (0, right_pad)),
                                            mode='constant',
                                            constant_values=0)

            # update image resolution
            ori_height, ori_width = sample['left'].shape[:2]

        assert self.img_height <= ori_height and self.img_width <= ori_width

        # Training: random crop
        self.offset_x = np.random.randint(ori_width - self.img_width + 1)

        start_height = 0
        assert ori_height - start_height >= self.img_height

        self.offset_y = np.random.randint(start_height, ori_height - self.img_height + 1)

        sample['left'] = self.crop_img(sample['left'])
        sample['right'] = self.crop_img(sample['right'])
        if 'disp' in sample.keys():
            sample['disp'] = self.crop_img(sample['disp'])

        return sample

    def crop_img(self, img):
        return img[self.offset_y:self.offset_y + self.img_height,
               self.offset_x:self.offset_x + self.img_width]


class RandomVerticalFlip(object):
    """Randomly vertically filps"""

    def __call__(self, sample):
        if np.random.random() < 0.5:
            sample['left'] = np.copy(np.flipud(sample['left']))
            sample['right'] = np.copy(np.flipud(sample['right']))

            sample['disp'] = np.copy(np.flipud(sample['disp']))

        return sample


class ToPILImage(object):

    def __call__(self, sample):
        sample['left'] = Image.fromarray(sample['left'].astype('uint8'))
        sample['right'] = Image.fromarray(sample['right'].astype('uint8'))

        return sample


class ToNumpyArray(object):

    def __call__(self, sample):
        sample['left'] = np.array(sample['left']).astype(np.float32)
        sample['right'] = np.array(sample['right']).astype(np.float32)

        return sample


# Random coloring
class RandomContrast(object):
    """Random contrast"""

    def __init__(self,
                 asymmetric_color_aug=True,
                 ):

        self.asymmetric_color_aug = asymmetric_color_aug

    def __call__(self, sample):
        if np.random.random() < 0.5:
            contrast_factor = np.random.uniform(0.8, 1.2)

            sample['left'] = F.adjust_contrast(sample['left'], contrast_factor)

            if self.asymmetric_color_aug and np.random.random() < 0.5:
                contrast_factor = np.random.uniform(0.8, 1.2)

            sample['right'] = F.adjust_contrast(sample['right'], contrast_factor)

        return sample


class RandomGamma(object):

    def __init__(self,
                 asymmetric_color_aug=True,
                 ):

        self.asymmetric_color_aug = asymmetric_color_aug

    def __call__(self, sample):
        if np.random.random() < 0.5:
            gamma = np.random.uniform(0.7, 1.5)  # adopted from FlowNet

            sample['left'] = F.adjust_gamma(sample['left'], gamma)

            if self.asymmetric_color_aug and np.random.random() < 0.5:
                gamma = np.random.uniform(0.7, 1.5)  # adopted from FlowNet

            sample['right'] = F.adjust_gamma(sample['right'], gamma)

        return sample


class RandomBrightness(object):

    def __init__(self,
                 asymmetric_color_aug=True,
                 ):

        self.asymmetric_color_aug = asymmetric_color_aug

    def __call__(self, sample):
        if np.random.random() < 0.5:
            brightness = np.random.uniform(0.5, 2.0)

            sample['left'] = F.adjust_brightness(sample['left'], brightness)

            if self.asymmetric_color_aug and np.random.random() < 0.5:
                brightness = np.random.uniform(0.5, 2.0)

            sample['right'] = F.adjust_brightness(sample['right'], brightness)

        return sample


class RandomHue(object):

    def __init__(self,
                 asymmetric_color_aug=True,
                 ):

        self.asymmetric_color_aug = asymmetric_color_aug

    def __call__(self, sample):
        if np.random.random() < 0.5:
            hue = np.random.uniform(-0.1, 0.1)

            sample['left'] = F.adjust_hue(sample['left'], hue)

            if self.asymmetric_color_aug and np.random.random() < 0.5:
                hue = np.random.uniform(-0.1, 0.1)

            sample['right'] = F.adjust_hue(sample['right'], hue)

        return sample


class RandomSaturation(object):

    def __init__(self,
                 asymmetric_color_aug=True,
                 ):

        self.asymmetric_color_aug = asymmetric_color_aug

    def __call__(self, sample):
        if np.random.random() < 0.5:
            saturation = np.random.uniform(0.8, 1.2)

            sample['left'] = F.adjust_saturation(sample['left'], saturation)

            if self.asymmetric_color_aug and np.random.random() < 0.5:
                saturation = np.random.uniform(0.8, 1.2)

            sample['right'] = F.adjust_saturation(sample['right'], saturation)

        return sample


class RandomColor(object):

    def __init__(self,
                 asymmetric_color_aug=True,
                 ):

        self.asymmetric_color_aug = asymmetric_color_aug

    def __call__(self, sample):
        transforms = [RandomContrast(asymmetric_color_aug=self.asymmetric_color_aug),
                      RandomGamma(asymmetric_color_aug=self.asymmetric_color_aug),
                      RandomBrightness(asymmetric_color_aug=self.asymmetric_color_aug),
                      RandomHue(asymmetric_color_aug=self.asymmetric_color_aug),
                      RandomSaturation(asymmetric_color_aug=self.asymmetric_color_aug)]

        sample = ToPILImage()(sample)

        if np.random.random() < 0.5:
            # A single transform
            t = random.choice(transforms)
            sample = t(sample)
        else:
            # Combination of transforms
            # Random order
            random.shuffle(transforms)
            for t in transforms:
                sample = t(sample)

        sample = ToNumpyArray()(sample)

        return sample


class RandomScale(object):
    def __init__(self,
                 min_scale=-0.4,
                 max_scale=0.4,
                 crop_width=512,
                 nearest_interp=False,  # for sparse gt
                 ):
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.crop_width = crop_width
        self.nearest_interp = nearest_interp

    def __call__(self, sample):
        if np.random.rand() < 0.5:
            h, w = sample['disp'].shape

            scale_x = 2 ** np.random.uniform(self.min_scale, self.max_scale)

            scale_x = np.clip(scale_x, self.crop_width / float(w), None)

            # only random scale x axis
            sample['left'] = cv2.resize(sample['left'], None, fx=scale_x, fy=1., interpolation=cv2.INTER_LINEAR)
            sample['right'] = cv2.resize(sample['right'], None, fx=scale_x, fy=1., interpolation=cv2.INTER_LINEAR)

            sample['disp'] = cv2.resize(
                sample['disp'], None, fx=scale_x, fy=1.,
                interpolation=cv2.INTER_LINEAR if not self.nearest_interp else cv2.INTER_NEAREST
            ) * scale_x

            if 'pseudo_disp' in sample and sample['pseudo_disp'] is not None:
                sample['pseudo_disp'] = cv2.resize(sample['pseudo_disp'], None, fx=scale_x, fy=1.,
                                                   interpolation=cv2.INTER_LINEAR) * scale_x

        return sample


class Resize(object):
    def __init__(self,
                 scale_x=1,
                 scale_y=1,
                 nearest_interp=True,  # for sparse gt
                 ):
        """
        Resize low-resolution data to high-res for mixed dataset training
        """
        self.scale_x = scale_x
        self.scale_y = scale_y
        self.nearest_interp = nearest_interp

    def __call__(self, sample):
        scale_x = self.scale_x
        scale_y = self.scale_y

        sample['left'] = cv2.resize(sample['left'], None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
        sample['right'] = cv2.resize(sample['right'], None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)

        sample['disp'] = cv2.resize(
            sample['disp'], None, fx=scale_x, fy=scale_y,
            interpolation=cv2.INTER_LINEAR if not self.nearest_interp else cv2.INTER_NEAREST
        ) * scale_x

        return sample


class RandomGrayscale(object):
    def __init__(self, p=0.2):
        self.p = p

    def __call__(self, sample):
        if np.random.random() < self.p:
            sample = ToPILImage()(sample)

            # only supported in higher version pytorch
            # default output channels is 1
            sample['left'] = F.rgb_to_grayscale(sample['left'], num_output_channels=3)
            sample['right'] = F.rgb_to_grayscale(sample['right'], num_output_channels=3)

            sample = ToNumpyArray()(sample)

        return sample


class RandomRotateShiftRight(object):
    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, sample):
        if np.random.random() < self.p:
            angle, pixel = 0.1, 2
            px = np.random.uniform(-pixel, pixel)
            ag = np.random.uniform(-angle, angle)

            right_img = sample['right']

            image_center = (
                np.random.uniform(0, right_img.shape[0]),
                np.random.uniform(0, right_img.shape[1])
            )

            rot_mat = cv2.getRotationMatrix2D(image_center, ag, 1.0)
            right_img = cv2.warpAffine(
                right_img, rot_mat, right_img.shape[1::-1], flags=cv2.INTER_LINEAR
            )
            trans_mat = np.float32([[1, 0, 0], [0, 1, px]])
            right_img = cv2.warpAffine(
                right_img, trans_mat, right_img.shape[1::-1], flags=cv2.INTER_LINEAR
            )

            sample['right'] = right_img

        return sample


class RandomOcclusion(object):
    def __init__(self, p=0.5,
                 occlusion_mask_zero=False):
        self.p = p
        self.occlusion_mask_zero = occlusion_mask_zero

    def __call__(self, sample):
        bounds = [50, 100]
        if np.random.random() < self.p:
            img2 = sample['right']
            ht, wd = img2.shape[:2]

            if self.occlusion_mask_zero:
                mean_color = 0
            else:
                mean_color = np.mean(img2.reshape(-1, 3), axis=0)

            x0 = np.random.randint(0, wd)
            y0 = np.random.randint(0, ht)
            dx = np.random.randint(bounds[0], bounds[1])
            dy = np.random.randint(bounds[0], bounds[1])
            img2[y0:y0 + dy, x0:x0 + dx, :] = mean_color

            sample['right'] = img2

        return sample