import streamlit as st import torch import os import librosa import librosa.display import matplotlib.pyplot as plt from audiosr import build_model, super_resolution, save_wave import tempfile import numpy as np # Set MPS device if available (for Mac M-Series GPUs) device = "cuda" if torch.cuda.is_available() else "cpu" # Title and Description st.title("AudioSR: Versatile Audio Super-Resolution") st.write(""" Upload your low-resolution audio files, and AudioSR will enhance them to high fidelity! Supports all types of audio (music, speech, sound effects, etc.) with arbitrary sampling rates. """) # Upload audio file uploaded_file = st.file_uploader("Upload an audio file (WAV format)", type=["wav"]) # Model Parameters st.sidebar.title("Model Parameters") model_name = st.sidebar.selectbox("Select Model", ["basic", "speech"], index=0) ddim_steps = st.sidebar.slider("DDIM Steps", min_value=10, max_value=100, value=50) guidance_scale = st.sidebar.slider("Guidance Scale", min_value=1.0, max_value=10.0, value=3.5) random_seed = st.sidebar.number_input("Random Seed", min_value=0, value=42, step=1) latent_t_per_second = 12.8 # Helper function to plot spectrogram def plot_spectrogram(audio_path, title): y, sr = librosa.load(audio_path, sr=None) S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=sr // 2) S_dB = librosa.power_to_db(S, ref=np.max) plt.figure(figsize=(10, 4)) librosa.display.specshow(S_dB, sr=sr, x_axis='time', y_axis='mel', fmax=sr // 2, cmap='viridis') plt.colorbar(format='%+2.0f dB') plt.title(title) plt.tight_layout() return plt # Process Button if uploaded_file and st.button("Enhance Audio"): st.write("Processing audio...") # Create temp directory for saving files with tempfile.TemporaryDirectory() as tmp_dir: input_path = os.path.join(tmp_dir, "input.wav") output_path = os.path.join(tmp_dir, "output.wav") # Save uploaded file locally with open(input_path, "wb") as f: f.write(uploaded_file.read()) # Plot input spectrogram st.write("Input Audio Spectrogram:") input_spectrogram = plot_spectrogram(input_path, title="Input Audio Spectrogram") st.pyplot(input_spectrogram) # Build and load the model audiosr = build_model(model_name=model_name, device=device) # Perform super-resolution waveform = super_resolution( audiosr, input_path, seed=random_seed, guidance_scale=guidance_scale, ddim_steps=ddim_steps, latent_t_per_second=latent_t_per_second, ) # Save enhanced audio save_wave(waveform, inputpath=input_path, savepath=tmp_dir, name="output", samplerate=48000) # Plot output spectrogram st.write("Enhanced Audio Spectrogram:") output_spectrogram = plot_spectrogram(output_path, title="Enhanced Audio Spectrogram") st.pyplot(output_spectrogram) # Display audio players and download link st.audio(input_path, format="audio/wav") st.write("Original Audio:") st.audio(output_path, format="audio/wav") st.write("Enhanced Audio:") st.download_button("Download Enhanced Audio", data=open(output_path, "rb").read(), file_name="enhanced_audio.wav") # Footer st.write("Built with [Streamlit](https://streamlit.io) and [AudioSR](https://audioldm.github.io/audiosr)")