Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License | |
""" Tokenization classes for IndoNLG model.""" | |
import os | |
from shutil import copyfile | |
from typing import List, Optional, Tuple | |
from transformers import PreTrainedTokenizer | |
import sentencepiece as spm | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": { | |
"indobart": "https://huggingface.co/indobart/resolve/main/sentencepiece.bpe.model", | |
"indogpt": "https://huggingface.co/indogptresolve/main/sentencepiece.bpe.model", | |
"indobart-v2": "https://huggingface.co/indobart-v2/resolve/main/sentencepiece.bpe.model" | |
} | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"indobenchmark/indobart": 768, | |
"ndobenchmark/indogpt": 768, | |
"indobenchmark/indobart-v2": 768 | |
} | |
SHARED_MODEL_IDENTIFIERS = [ | |
# Load with | |
"indobenchmark/indobart", | |
"indobenchmark/indogpt", | |
"indobenchmark/indobart-v2" | |
] | |
SPIECE_UNDERLINE = "▁" | |
class IndoNLGTokenizer(PreTrainedTokenizer): | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
model_input_names = ["input_ids","attention_mask"] | |
def __init__( | |
self, | |
vocab_file, | |
decode_special_token=True, | |
bos_token="<s>", | |
eos_token="</s>", | |
sep_token="</s>", | |
cls_token="<s>", | |
unk_token="<unk>", | |
pad_token="<pad>", | |
mask_token="<mask>", | |
additional_special_tokens=["[java]","[sunda]","[indonesia]","<mask>"], | |
**kwargs | |
): | |
super().__init__( | |
vocab_file=vocab_file, | |
bos_token=bos_token, | |
eos_token=eos_token, | |
unk_token=unk_token, | |
sep_token=sep_token, | |
cls_token=cls_token, | |
pad_token=pad_token, | |
mask_token=mask_token, | |
additional_special_tokens=additional_special_tokens, | |
**kwargs, | |
) | |
self.sp_model = spm.SentencePieceProcessor() | |
self.sp_model.Load(str(vocab_file)) | |
self.vocab_file = vocab_file | |
self.decode_special_token = decode_special_token | |
self.model_max_length = 1024 | |
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual | |
# sentencepiece vocabulary (this is the case for <s> and </s> | |
self.special_tokens_to_ids = { | |
"[java]": 40000, | |
"[sunda]": 40001, | |
"[indonesia]": 40002, | |
"<mask>": 40003 | |
} | |
self.special_ids_to_tokens = {v: k for k, v in self.special_tokens_to_ids.items()} | |
# Store Language token ID | |
self.javanese_token = '[javanese]' | |
self.javanese_token_id = 40000 | |
self.sundanese_token = '[sundanese]' | |
self.sundanese_token_id = 40001 | |
self.indonesian_token = '[indonesia]' | |
self.indonesian_token_id = 40002 | |
self.special_token_ids = [ | |
self.bos_token_id, self.eos_token_id, self.sep_token_id, self.cls_token_id, | |
self.unk_token_id, self.pad_token_id, self.mask_token_id, | |
self.javanese_token_id, self.sundanese_token_id, self.indonesian_token_id | |
] | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. An CamemBERT sequence has the following format: | |
- single sequence: ``<s> X </s>`` | |
- pair of sequences: ``<s> A </s></s> B </s>`` | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. | |
""" | |
if token_ids_1 is None: | |
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] | |
cls = [self.cls_token_id] | |
sep = [self.sep_token_id] | |
return cls + token_ids_0 + sep + sep + token_ids_1 + sep | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer ``prepare_for_model`` method. | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
if token_ids_1 is None: | |
return [1] + ([0] * len(token_ids_0)) + [1] | |
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. CamemBERT, like | |
RoBERTa, does not make use of token type ids, therefore a list of zeros is returned. | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
:obj:`List[int]`: List of zeros. | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
if token_ids_1 is None: | |
return len(cls + token_ids_0 + sep) * [0] | |
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] | |
def vocab_size(self): | |
return 4 + len(self.sp_model) | |
def get_vocab(self): | |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
def _tokenize(self, text: str) -> List[str]: | |
return self.sp_model.encode(text, out_type=str) | |
def _convert_token_to_id(self, token): | |
""" Converts a token (str) in an id using the vocab. """ | |
if token in self.special_tokens_to_ids: | |
return self.special_tokens_to_ids[token] | |
return self.sp_model.PieceToId(token) | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
if not self.decode_special_token and index in self.special_token_ids: | |
return '' | |
if index in self.special_ids_to_tokens: | |
return self.special_ids_to_tokens[index] | |
return self.sp_model.IdToPiece(index) | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
state["sp_model"] = None | |
return state | |
def __setstate__(self, d): | |
self.__dict__ = d | |
# for backward compatibility | |
if not hasattr(self, "sp_model_kwargs"): | |
self.sp_model_kwargs = {} | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(self.vocab_file) | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (strings for sub-words) in a single string.""" | |
return self.sp_model.decode(tokens) | |
def decode(self, inputs, skip_special_tokens=False): | |
prev_val = self.decode_special_token | |
self.decode_special_token = not skip_special_tokens | |
outputs = super().decode(inputs, skip_special_tokens=skip_special_tokens) | |
self.decode_special_token = prev_val | |
return outputs | |