import os import torch import gradio as gr from PIL import Image from torchvision import transforms """ Built following: https://huggingface.co/spaces/pytorch/ResNet/tree/main https://www.gradio.app/image_classification_in_pytorch/ """ # Get classes list os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt") # Load PyTorch model model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True) model.eval() # Download an example image from the pytorch website torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") # Inference! def inference(input_image): preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # Move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch) # The output has unnormalized scores. To get probabilities, you can run a softmax on it. probabilities = torch.nn.functional.softmax(output[0], dim=0) # Read the categories with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Show top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) result = {} for i in range(top5_prob.size(0)): result[categories[top5_catid[i]]] = top5_prob[i].item() return result # Define ins outs placeholders inputs = gr.inputs.Image(type='pil') outputs = gr.outputs.Label(type="confidences",num_top_classes=5) # Define style title = "Image Recognition Demo" description = "This is a prototype application which demonstrates how artifical intelligence based systems can recognize what object(s) is present in an image. This fundamental task in computer vision known as `Image Classification` has applications stretching from autonomous vehicles to medical imaging. To use it, simply upload your image, or click one of the examples images to load them, which I took at Montréal Biodôme! Read more at the links below." article = "

Deep Residual Learning for Image Recognition | Github Repo

" # Run inference gr.Interface(inference, inputs, outputs, examples=["example1.jpg", "example2.jpg"], title=title, description=description, article=article, analytics_enabled=False).launch()