Spaces:
Build error
Build error
File size: 2,502 Bytes
7009660 98639ab 7009660 98639ab 21e8045 7009660 e84bd04 7009660 defb879 7009660 fbb697c 98639ab 7009660 fbb697c 21e8045 fbb697c 0cd40c7 fbb697c be996f7 fbb697c 0cd40c7 8d717c1 c62c32d 21e8045 0cd40c7 fbb697c 1f84a9a fbb697c aeb550e 6f8476a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import streamlit as st
import load_model
import utils as ut
import elements as el
import os
import torch
import psutil
persist_directory = load_model.persist_directory
st.title('myRetrievalGPT')
st.header('An GPT Retrieval example brought to you by Heiko Wagner')
st.markdown('*Let $\phi$ be a word embedding mapping $W$ → $\mathbb{R}^n$ where $W$ is the word space and $\mathbb{R}^n$ is an $n$-dimensional vector space then: $\phi(king)-\phi(man)+\phi(woman)=\phi(queen)$.* ')
agree = st.checkbox('Load new Documents')
if agree:
el.load_files()
else:
import torch
torch.cuda.empty_cache()
st.write(str( torch.cuda.is_available()) + str(psutil.virtual_memory()))
model_type = st.selectbox(
'Select the Documents to be used to answer your question',
('OpenAI', 'decapoda-research/llama-7b-hf (gpu+cpu)', 'llama-7b 4bit (cpu only)',) )
if model_type=='OpenAI':
if 'openai_key' not in st.session_state:
openai_key= st.text_area('OpenAI Key:', '')
if len(openai_key)>-1:
st.session_state['openai_key'] = openai_key
os.environ["OPENAI_API_KEY"] = openai_key
else:
os.environ["OPENAI_API_KEY"] = st.session_state.openai_key
llm= load_model.load_openai_model()
elif model_type=='decapoda-research/llama-7b-hf (gpu+cpu)':
# Add more models here
if not torch.cuda.is_available() and psutil.virtual_memory().available< 18254768640:
st.write('You do not have enough memory to use this model:' + str(psutil.virtual_memory().available))
else:
llm = load_model.load_gpu_model("decapoda-research/llama-7b-hf")
else:
llm = load_model.load_cpu_model()
collections = ut.retrieve_collections()
option = st.selectbox(
'Select the Documents to be used to answer your question',
collections )
st.write('You selected:', option['name'])
chain = load_model.create_chain(llm, collection=option['name'], model_name=option['model_name'], metadata= option['metadata'])
query = st.text_area('Ask a question:', 'Hallo how are you today?')
result = chain({"query": query + " Add a Score of the propability that your answer is correct to your answer"})
ut.format_result_set(result)
#from langchain.chains import ConversationChain
#from langchain.memory import ConversationBufferMemory
#conversation = ConversationChain(
# llm=chat,
# memory=ConversationBufferMemory()
#)
|