# This script inits the models and adds an example collection to the Vectorstore # %% import os import pathlib from load_model import load_embedding from utils import get_chroma_client from load_vectors import load_from_web, create_and_add, load_and_split, metadata_generator current_path = str( pathlib.Path(__file__).parent.resolve() ) with open(current_path+'/.openaiapikey', 'r') as reader: os.environ['OPENAI_API_KEY']=reader.read() import load_model # %% #load_model.load_gpu_model("decapoda-research/llama-7b-hf") #Download local model #llm= load_model.load_openai_model() # %% #Load example Data client = get_chroma_client() client.reset() ef = load_embedding("hkunlp/instructor-large") collection_name="papers" metadata= {"loaded_docs":[], "Subject":"Heikos Papers", "model_name": ef.model_name} selected_collection = client.create_collection(collection_name, embedding_function=ef, metadata=metadata) docs_tarifs= [ "https://edoc.hu-berlin.de/bitstream/handle/18452/5294/33.pdf", "https://arxiv.org/pdf/1702.03556v3.pdf", "https://arxiv.org/pdf/1706.03762" ] # %% # Load collection to get metadata loaded_collection = client.get_collection(collection_name) model_name = loaded_collection.metadata['model_name'] # %% docs = load_from_web(docs_tarifs) sub_docs = load_and_split(docs, chunk_size=1000) create_and_add(collection_name, sub_docs, model_name, metadata) # %% llm= load_model.load_cpu_model() chain = load_model.create_chain(llm, collection=collection_name, model_name=model_name, metadata=metadata) result = chain({"query": "Ist mein Kinderwagen bei einem Leitungswasserschaden mitversichert?"}) print(result) #llm= load_model.load_openai_model(temperature=0.1) #llm= load_model.load_cpu_model() #meta= metadata_generator(docs[0], llm) # %% #print(meta) # %%