import streamlit as st import load_model import utils as ut import os persist_directory = load_model.persist_directory st.title('myRetrievalGPT') st.header('An GPT Retrieval example brought to you by Heiko Wagner') st.markdown('*Let $\phi$ be a word embedding mapping $W$ → $\mathbb{R}^n$ where $W$ is the word space and $\mathbb{R}^n$ is an $n$-dimensional vector space then: $\phi(king)-\phi(man)+\phi(woman)=\phi(queen)$* ') agree = st.checkbox('Load new Documents') if agree: ut.load_files() else: import torch torch.cuda.empty_cache() model_type = st.selectbox( 'Select the Documents to be used to answer your question', ('OpenAI', 'Load local model') ) if model_type=='OpenAI': if 'openai_key' not in st.session_state: openai_key= st.text_area('OpenAI Key:', '') if len(openai_key)>10: st.session_state['openai_key'] = openai_key os.environ["OPENAI_API_KEY"] = openai_key else: os.environ["OPENAI_API_KEY"] = st.session_state.openai_key llm= load_model.load_openai_model() else: # Add more models here llm = load_model.load_gpu_model("decapoda-research/llama-7b-hf") collections = ut.retrieve_collections() option = st.selectbox( 'Select the Documents to be used to answer your question', collections ) st.write('You selected:', option['name']) chain = load_model.create_chain(llm, collection=option['name'], model_name=option['model_name'], metadata= option['metadata']) query = st.text_area('Ask a question:', 'Hallo how are you today?') result = chain({"query": query + " Add a Score of the propability that your answer is correct to your answer"}) ut.format_result_set(result) #from langchain.chains import ConversationChain #from langchain.memory import ConversationBufferMemory #conversation = ConversationChain( # llm=chat, # memory=ConversationBufferMemory() #)