|
import cv2 |
|
import numpy as np |
|
import math |
|
import torch |
|
import random |
|
from PIL import Image |
|
|
|
from torch.utils.data import DataLoader |
|
from torchvision.transforms import Resize |
|
|
|
torch.manual_seed(12345) |
|
random.seed(12345) |
|
np.random.seed(12345) |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
|
|
class WireframeExtractor: |
|
|
|
def __call__(self, image: np.ndarray): |
|
""" |
|
Extract corners of wireframe from a barnacle image |
|
:param image: Numpy RGB image of shape (W, H, 3) |
|
:return [x1, y1, x2, y2] |
|
""" |
|
h, w = image.shape[:2] |
|
imghsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) |
|
hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0) |
|
|
|
lower = np.array([70, 20, 20]) |
|
upper = np.array([130, 255, 255]) |
|
|
|
color_mask = cv2.inRange(hsvblur, lower, upper) |
|
|
|
invert = cv2.bitwise_not(color_mask) |
|
|
|
contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) |
|
|
|
max_contour = contours[0] |
|
largest_area = 0 |
|
for index, contour in enumerate(contours): |
|
area = cv2.contourArea(contour) |
|
if area > largest_area: |
|
if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1: |
|
largest_area = area |
|
max_contour = contour |
|
|
|
x, y, w, h = cv2.boundingRect(max_contour) |
|
|
|
return x,y,w,h |
|
|
|
wireframe_extractor = WireframeExtractor() |
|
|
|
def show_anns(anns): |
|
if len(anns) == 0: |
|
return |
|
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) |
|
ax = plt.gca() |
|
ax.set_autoscale_on(False) |
|
polygons = [] |
|
color = [] |
|
for ann in sorted_anns: |
|
m = ann['segmentation'] |
|
img = np.ones((m.shape[0], m.shape[1], 3)) |
|
color_mask = np.random.random((1, 3)).tolist()[0] |
|
for i in range(3): |
|
img[:,:,i] = color_mask[i] |
|
ax.imshow(np.dstack((img, m*0.35))) |
|
|
|
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor |
|
|
|
model = sam_model_registry["default"](checkpoint="./sam_vit_h_4b8939.pth") |
|
model.to(device) |
|
|
|
mask_generator = SamAutomaticMaskGenerator(model) |
|
|
|
import gradio as gr |
|
|
|
import matplotlib.pyplot as plt |
|
import io |
|
|
|
def check_circularity(segmentation): |
|
img_u8 = segmentation.astype(np.uint8) |
|
im_gauss = cv2.GaussianBlur(img_u8, (5, 5), 0) |
|
ret, thresh = cv2.threshold(im_gauss, 0, 255, cv2.THRESH_BINARY) |
|
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
con = contours[0] |
|
perimeter = cv2.arcLength(con, True) |
|
area = cv2.contourArea(con) |
|
if perimeter != 0: |
|
circularity = 4*math.pi*(area/(perimeter*perimeter)) |
|
if 0.8 < circularity < 1.2: |
|
return True |
|
else: |
|
return circularity |
|
|
|
def count_barnacles(image_raw, split_num, progress=gr.Progress()): |
|
progress(0, desc="Finding bounding wire") |
|
|
|
corners = wireframe_extractor(image_raw) |
|
print(corners) |
|
|
|
cropped_image = image_raw[corners[1]:corners[3]+corners[1], corners[0]:corners[2]+corners[0], :] |
|
|
|
print(cropped_image.shape) |
|
|
|
split_num = 2 |
|
|
|
x_inc = int(cropped_image.shape[0]/split_num) |
|
y_inc = int(cropped_image.shape[1]/split_num) |
|
startx = -x_inc |
|
|
|
mask_counter = 0 |
|
good_masks = [] |
|
centers = [] |
|
|
|
for r in range(0, split_num): |
|
startx += x_inc |
|
starty = -y_inc |
|
for c in range(0, split_num): |
|
starty += y_inc |
|
|
|
small_image = cropped_image[starty:starty+y_inc, startx:startx+x_inc, :] |
|
|
|
|
|
|
|
|
|
progress(0, desc=f"Generating masks for crop {r*split_num + c}/{split_num ** 2}") |
|
masks = mask_generator.generate(small_image) |
|
num_masks = len(masks) |
|
|
|
for idx, mask in enumerate(masks): |
|
progress(float(idx)/float(num_masks), desc=f"Processing masks for crop {r*split_num + c}/{split_num ** 2}") |
|
circular = check_circularity(mask['segmentation']) |
|
if circular and mask['area']>500 and mask['area'] < 10000: |
|
mask_counter += 1 |
|
good_masks.append(mask) |
|
box = mask['bbox'] |
|
centers.append((box[0] + box[2]/2 + corners[0] + startx, box[1] + box[3]/2 + corners[1] + starty)) |
|
|
|
|
|
progress(0, desc="Generating Plot") |
|
|
|
fig = plt.figure(figsize=(10, 10)) |
|
|
|
|
|
|
|
plt.imshow(image_raw) |
|
|
|
|
|
|
|
|
|
for coord in centers: |
|
plt.scatter(coord[0], coord[1], marker="x", color="red", s=32) |
|
|
|
|
|
plt.axis('off') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
good_centers = [] |
|
for point in centers: |
|
is_good = True |
|
for prev_point in good_centers: |
|
if (point[0] - prev_point[0]) ** 2 + (point[1] + prev_point[1]) ** 2 < 200: |
|
is_good = False |
|
if is_good: |
|
good_centers.append(point) |
|
|
|
return fig, len(good_centers), good_centers |
|
|
|
demo = gr.Interface(count_barnacles, |
|
inputs=[ |
|
gr.Image(type="numpy", label="Input Image"), |
|
], |
|
outputs=[ |
|
|
|
gr.Plot(label="Annotated Image"), |
|
gr.Number(label="Predicted Number of Barnacles"), |
|
gr.Dataframe(type="array", headers=["x", "y"], label="Mask centers") |
|
|
|
|
|
]) |
|
|
|
demo.queue(concurrency_count=1).launch() |