File size: 15,601 Bytes
a34b545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import cv2
import numpy as np
import math
import torch
import random
from PIL import Image

from torch.utils.data import DataLoader
from torchvision.transforms import Resize

torch.manual_seed(12345)
random.seed(12345)
np.random.seed(12345)

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

class WireframeExtractor:

    def __call__(self, image: np.ndarray):
        """
        Extract corners of wireframe from a barnacle image
        :param image: Numpy RGB image of shape (W, H, 3)
        :return [x1, y1, x2, y2]
        """
        h, w = image.shape[:2]
        imghsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
        hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0)

        lower = np.array([70, 20, 20])
        upper = np.array([130, 255, 255])

        color_mask = cv2.inRange(hsvblur, lower, upper)

        invert = cv2.bitwise_not(color_mask)

        contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

        max_contour = contours[0]
        largest_area = 0
        for index, contour in enumerate(contours):
            area = cv2.contourArea(contour)
            if area > largest_area:
                if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1:
                    largest_area = area
                    max_contour = contour

        x, y, w, h = cv2.boundingRect(max_contour)
        # return [x, y, x + w, y + h]
        return x,y,w,h

wireframe_extractor = WireframeExtractor()

def show_anns(anns):
    if len(anns) == 0:
        return
    sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
    ax = plt.gca()
    ax.set_autoscale_on(False)
    polygons = []
    color = []
    for ann in sorted_anns:
        m = ann['segmentation']
        img = np.ones((m.shape[0], m.shape[1], 3))
        color_mask = np.random.random((1, 3)).tolist()[0]
        for i in range(3):
            img[:,:,i] = color_mask[i]
        ax.imshow(np.dstack((img, m*0.35)))
    

# def find_contours(img, color):
#     low = color - 10
#     high = color + 10

#     mask = cv2.inRange(img, low, high)
#     contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

#     print(f"Total Contours: {len(contours)}")
#     nonempty_contours = list()
#     for i in range(len(contours)):
#         if hierarchy[0,i,3] == -1 and cv2.contourArea(contours[i]) > cv2.arcLength(contours[i], True):
#             nonempty_contours += [contours[i]]
#     print(f"Nonempty Contours: {len(nonempty_contours)}")
#     contour_plot = img.copy()
#     contour_plot = cv2.drawContours(contour_plot, nonempty_contours, -1, (0,255,0), -1)

#     sorted_contours = sorted(nonempty_contours, key=cv2.contourArea, reverse= True)

#     bounding_rects = [cv2.boundingRect(cnt) for cnt in contours]

#     for (i,c) in enumerate(sorted_contours):
#         M= cv2.moments(c)
#         cx= int(M['m10']/M['m00'])
#         cy= int(M['m01']/M['m00'])
#         cv2.putText(contour_plot, text= str(i), org=(cx,cy),
#                 fontFace= cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.25, color=(255,255,255),
#                 thickness=1, lineType=cv2.LINE_AA)

#     N = len(sorted_contours)
#     H, W, C = img.shape
#     boxes_array_xywh = [cv2.boundingRect(cnt) for cnt in sorted_contours]
#     boxes_array_corners = [[x, y, x+w, y+h] for x, y, w, h in boxes_array_xywh]
#     boxes = torch.tensor(boxes_array_corners)

#     labels = torch.ones(N)
#     masks = np.zeros([N, H, W])
#     for idx in range(len(sorted_contours)):
#         cnt = sorted_contours[idx]
#         cv2.drawContours(masks[idx,:,:], [cnt], 0, (255), -1)
#     masks = masks / 255.0
#     masks = torch.tensor(masks)

#     # for box in boxes:
#     #     cv2.rectangle(contour_plot, (box[0].item(), box[1].item()), (box[2].item(), box[3].item()), (255,0,0), 2)

#     return contour_plot, (boxes, masks)


# def get_dataset_x(blank_image, filter_size=50, filter_stride=2):
#     full_image_tensor = torch.tensor(blank_image).type(torch.FloatTensor).permute(2, 0, 1).unsqueeze(0)
#     num_windows_h = math.floor((full_image_tensor.shape[2] - filter_size) / filter_stride) + 1
#     num_windows_w = math.floor((full_image_tensor.shape[3] - filter_size) / filter_stride) + 1
#     windows = torch.nn.functional.unfold(full_image_tensor, (filter_size, filter_size), stride=filter_stride).reshape(
#         [1, 3, 50, 50, num_windows_h * num_windows_w]).permute([0, 4, 1, 2, 3]).squeeze()

#     dataset_images = [windows[idx] for idx in range(len(windows))]
#     dataset = list(dataset_images)
#     return dataset


# def get_dataset(labeled_image, blank_image, color, filter_size=50, filter_stride=2, label_size=5):
#     contour_plot, (blue_boxes, blue_masks) = find_contours(labeled_image, color)

#     mask = torch.sum(blue_masks, 0)

#     label_dim = int((labeled_image.shape[0] - filter_size) / filter_stride + 1)
#     labels = torch.zeros(label_dim, label_dim)
#     mask_labels = torch.zeros(label_dim, label_dim, filter_size, filter_size)

#     for lx in range(label_dim):
#         for ly in range(label_dim):
#             mask_labels[lx, ly, :, :] = mask[
#                                         lx * filter_stride: lx * filter_stride + filter_size,
#                                         ly * filter_stride: ly * filter_stride + filter_size
#                                         ]

#     print(labels.shape)
#     for box in blue_boxes:
#         x = int((box[0] + box[2]) / 2)
#         y = int((box[1] + box[3]) / 2)

#         window_x = int((x - int(filter_size / 2)) / filter_stride)
#         window_y = int((y - int(filter_size / 2)) / filter_stride)

#         clamp = lambda n, minn, maxn: max(min(maxn, n), minn)

#         labels[
#         clamp(window_y - label_size, 0, labels.shape[0] - 1):clamp(window_y + label_size, 0, labels.shape[0] - 1),
#         clamp(window_x - label_size, 0, labels.shape[0] - 1):clamp(window_x + label_size, 0, labels.shape[0] - 1),
#         ] = 1

#     positive_labels = labels.flatten() / labels.max()
#     negative_labels = 1 - positive_labels
#     pos_mask_labels = torch.flatten(mask_labels, end_dim=1)
#     neg_mask_labels = 1 - pos_mask_labels
#     mask_labels = torch.stack([pos_mask_labels, neg_mask_labels], dim=1)
#     dataset_labels = torch.tensor(list(zip(positive_labels, negative_labels)))
#     dataset = list(zip(
#         get_dataset_x(blank_image, filter_size=filter_size, filter_stride=filter_stride),
#         dataset_labels,
#         mask_labels
#     ))
#     return dataset, (labels, mask_labels)


# from torchvision.models.resnet import resnet50
# from torchvision.models.resnet import ResNet50_Weights

# print("Loading resnet...")
# model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
# hidden_state_size = model.fc.in_features
# model.fc = torch.nn.Linear(in_features=hidden_state_size, out_features=2, bias=True)
# model.to(device)
# model.load_state_dict(torch.load("model_best_epoch_4_59.62.pth", map_location=torch.device(device)))
# model.to(device)
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor

model = sam_model_registry["default"](checkpoint="./sam_vit_h_4b8939.pth")
model.to(device)

predictor = SamPredictor(model)

mask_generator = SamAutomaticMaskGenerator(model)

import gradio as gr

import matplotlib.pyplot as plt
import io

def check_circularity(segmentation):
  img_u8 = segmentation.astype(np.uint8)
  im_gauss = cv2.GaussianBlur(img_u8, (5, 5), 0)
  ret, thresh = cv2.threshold(im_gauss, 0, 255, cv2.THRESH_BINARY)
  contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

  con = contours[0]
  perimeter = cv2.arcLength(con, True)
  area = cv2.contourArea(con)
  if perimeter != 0:
    circularity = 4*math.pi*(area/(perimeter*perimeter))
    if 0.8 < circularity < 1.2:
        return True
    else:
      return circularity

def count_barnacles(image_raw, split_num, progress=gr.Progress()):
    progress(0, desc="Finding bounding wire")

    # crop image
    # h, w = raw_input_img.shape[:2]
    # imghsv = cv2.cvtColor(raw_input_img, cv2.COLOR_RGB2HSV)
    # hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0)

    # lower = np.array([70, 20, 20])
    # upper = np.array([130, 255, 255])

    # color_mask = cv2.inRange(hsvblur, lower, upper)

    # invert = cv2.bitwise_not(color_mask)

    # contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

    # max_contour = contours[0]
    # largest_area = 0
    # for index, contour in enumerate(contours):
    #     area = cv2.contourArea(contour)
    #     if area > largest_area:
    #         if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1:
    #             largest_area = area
    #             max_contour = contour

    # x, y, w, h = cv2.boundingRect(max_contour)


    # image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB)
    # image = Image.fromarray(image_raw)
    # image = image[:,:,::-1]
    # image = image_raw
    # print(image.shape)
    # print(type(image))
    # print(image.dtype)
    # print(image)
    corners = wireframe_extractor(image_raw)
    print(corners) # (0, 0, 1254, 1152)

    cropped_image = image_raw[corners[1]:corners[3]+corners[1], corners[0]:corners[2]+corners[0], :]

    print(cropped_image.shape)
    # cropped_image = cropped_image[100:400, 100:400]
    # print(cropped_image)


    # progress(0, desc="Generating Masks by point in window")

    # # get center point of windows
    # predictor.set_image(image)
    # mask_counter = 0
    # masks = []

    # for x in range(1,20, 2):
    #     for y in range(1,20, 2):
    #         point = np.array([[x*25, y*25]])
    #         input_label = np.array([1])
    #         mask, score, logit = predictor.predict(
    #             point_coords=point,
    #             point_labels=input_label,
    #             multimask_output=False,
    #         )
    #         if score[0] > 0.8:
    #             mask_counter += 1
    #             masks.append(mask)

    # return mask_counter
    split_num = 2

    x_inc = int(cropped_image.shape[0]/split_num)
    y_inc = int(cropped_image.shape[1]/split_num)
    startx = -x_inc

    mask_counter = 0
    good_masks = []
    centers = []

    for r in range(0, split_num):
        startx += x_inc
        starty = -y_inc
        for c in range(0, split_num):
            starty += y_inc

            small_image = cropped_image[starty:starty+y_inc, startx:startx+x_inc, :]

            # plt.figure()
            # plt.imshow(small_image)
            # plt.axis('on')

            masks = mask_generator.generate(small_image)

            
            for mask in masks:
                circular = check_circularity(mask['segmentation'])
                if circular and mask['area']>500 and mask['area'] < 10000:
                    mask_counter += 1
                    # if cropped_image.shape != image_raw.shape:
                    #     add_to_row = [False] * corners[0] 
                    #     temp = [False]*(corners[2]+corners[0])
                    #     temp = [temp]*corners[1]
                    #     new_seg = np.array(temp)
                    #     for row in mask['segmentation']:
                    #         row = np.append(add_to_row, row)
                    #         new_seg = np.vstack([new_seg, row])
                    #     mask['segmentation'] = new_seg
                    good_masks.append(mask)
                    box = mask['bbox']
                    centers.append((box[0] + box[2]/2 + corners[0] + startx, box[1] + box[3]/2 + corners[1] + starty))

    
    progress(0, desc="Generating Plot")
    # Create a figure with a size of 10 inches by 10 inches
    fig = plt.figure(figsize=(10, 10))

    # Display the image using the imshow() function
    # plt.imshow(cropped_image)
    plt.imshow(image_raw)

    # Call the custom function show_anns() to plot annotations on top of the image
    # show_anns(good_masks)

    for coord in centers: 
        plt.scatter(coord[0], coord[1], marker="x", color="red", s=32)

    # Turn off the axis
    plt.axis('off')

    # Get the plot as a numpy array
    # buf = io.BytesIO()
    # plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
    # buf.seek(0)
    # img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
    # buf.close()

    # # Decode the numpy array to an image
    # annotated = cv2.imdecode(img_arr, 1)
    # annotated = cv2.cvtColor(annotated, cv2.COLOR_BGR2RGB)

    # # Close the figure
    # plt.close(fig)
    
    
    # return annotated, mask_counter, centers
    return fig, mask_counter, centers


    # return len(masks)

    # progress(0, desc="Resizing Image")
    # cropped_img = raw_input_img[x:x+w, y:y+h]
    # cropped_image_tensor = torch.transpose(torch.tensor(cropped_img).to(device), 0, 2)
    # resize = Resize((1500, 1500))
    # input_img = cropped_image_tensor
    # blank_img_copy = torch.transpose(input_img, 0, 2).to("cpu").detach().numpy().copy()

    # progress(0, desc="Generating Windows")
    # test_dataset = get_dataset_x(input_img)
    # test_dataloader = DataLoader(test_dataset, batch_size=1024, shuffle=False)
    # model.eval()
    # predicted_labels_list = []
    # for data in progress.tqdm(test_dataloader):
    #     with torch.no_grad():
    #         data = data.to(device)
    #         predicted_labels_list += [model(data)]
    # predicted_labels = torch.cat(predicted_labels_list)
    # x = int(math.sqrt(predicted_labels.shape[0]))
    # predicted_labels = predicted_labels.reshape([x, x, 2]).detach()
    # label_img = predicted_labels[:, :, :1].cpu().numpy()
    # label_img -= label_img.min()
    # label_img /= label_img.max()
    # label_img = (label_img * 255).astype(np.uint8)
    # mask = np.array(label_img > 180, np.uint8)
    # contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\

    # gt_contours = find_contours(labeled_input_img[x:x+w, y:y+h], cropped_img, np.array([59, 76, 160]))



    # def extract_contour_center(cnt):
    #     M = cv2.moments(cnt)
    #     cx = int(M['m10'] / M['m00'])
    #     cy = int(M['m01'] / M['m00'])
    #     return cx, cy

    # filter_width = 50
    # filter_stride = 2

    # def rev_window_transform(point):
    #     wx, wy = point
    #     x = int(filter_width / 2) + wx * filter_stride
    #     y = int(filter_width / 2) + wy * filter_stride
    #     return x, y

    # nonempty_contours = filter(lambda cnt: cv2.contourArea(cnt) != 0, contours)
    # windows = map(extract_contour_center, nonempty_contours)
    # points = list(map(rev_window_transform, windows))
    # for x, y in points:
    #     blank_img_copy = cv2.circle(blank_img_copy, (x, y), radius=4, color=(255, 0, 0), thickness=-1)
    # print(f"pointlist: {len(points)}")
    # return blank_img_copy, len(points)


demo = gr.Interface(count_barnacles,
                    inputs=[
                        gr.Image(type="numpy", label="Input Image"),
                    ],
                    outputs=[
                        # gr.Image(type="numpy", label="Annotated Image"),
                        gr.Plot(label="Annotated Image"),
                        gr.Number(label="Predicted Number of Barnacles"),
                        gr.Dataframe(type="array", headers=["x", "y"], label="Mask centers")
                        # gr.Number(label="Actual Number of Barnacles"),
                        # gr.Number(label="Custom Metric")
                    ])
                    # examples="examples")
demo.queue(concurrency_count=10).launch()