Spaces:
Runtime error
Runtime error
using complete local code and loading llm through ctransformers.
Browse files
app.py
CHANGED
@@ -1,23 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
from qdrant_client import models, QdrantClient
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
from PyPDF2 import PdfReader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
6 |
from langchain.callbacks.manager import CallbackManager
|
7 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
8 |
-
# from
|
|
|
|
|
|
|
|
|
9 |
from langchain.vectorstores import Qdrant
|
|
|
|
|
|
|
10 |
from qdrant_client.http import models
|
11 |
-
# from
|
|
|
12 |
from ctransformers import AutoModelForCausalLM
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
# loading the embedding model -
|
19 |
|
20 |
-
encoder = SentenceTransformer(
|
21 |
|
22 |
print("embedding model loaded.............................")
|
23 |
print("####################################################")
|
@@ -29,7 +206,9 @@ callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
|
29 |
print("loading the LLM......................................")
|
30 |
|
31 |
# llm = LlamaCpp(
|
32 |
-
# model_path="
|
|
|
|
|
33 |
# n_ctx=2048,
|
34 |
# f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
|
35 |
# callback_manager=callback_manager,
|
@@ -37,17 +216,16 @@ print("loading the LLM......................................")
|
|
37 |
# )
|
38 |
|
39 |
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-Chat-GGUF",
|
40 |
-
model_file="llama-2-7b-chat.
|
41 |
model_type="llama",
|
42 |
# config = ctransformers.hub.AutoConfig,
|
43 |
# hf = True
|
44 |
temperature = 0.2,
|
45 |
-
max_new_tokens = 1024,
|
46 |
-
stop = ['\n']
|
47 |
)
|
48 |
|
49 |
|
50 |
-
|
51 |
print("LLM loaded........................................")
|
52 |
print("################################################################")
|
53 |
|
@@ -75,7 +253,7 @@ for page in range(num_of_pages):
|
|
75 |
|
76 |
|
77 |
chunks = get_chunks(text)
|
78 |
-
|
79 |
print("Chunks are ready.....................................")
|
80 |
print("######################################################")
|
81 |
|
@@ -95,11 +273,11 @@ print("Collection created........................................")
|
|
95 |
print("#########################################################")
|
96 |
|
97 |
|
98 |
-
|
99 |
li = []
|
100 |
for i in range(len(chunks)):
|
101 |
li.append(i)
|
102 |
-
|
103 |
dic = zip(li, chunks)
|
104 |
dic= dict(dic)
|
105 |
|
@@ -110,6 +288,8 @@ qdrant.upload_records(
|
|
110 |
id=idx,
|
111 |
vector=encoder.encode(dic[idx]).tolist(),
|
112 |
payload= {dic[idx][:5] : dic[idx]}
|
|
|
|
|
113 |
) for idx in dic.keys()
|
114 |
],
|
115 |
)
|
@@ -128,8 +308,11 @@ def chat(question):
|
|
128 |
)
|
129 |
context = []
|
130 |
for hit in hits:
|
|
|
131 |
context.append(list(hit.payload.values())[0])
|
132 |
-
|
|
|
|
|
133 |
context = context[0] + context[1] + context[2]
|
134 |
|
135 |
system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
|
@@ -162,3 +345,5 @@ gr.Interface(
|
|
162 |
examples=["Hello", "what is the speed of human nerve impulses?"],
|
163 |
# cache_examples=True,
|
164 |
).launch()
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from qdrant_client import models, QdrantClient
|
3 |
+
# from sentence_transformers import SentenceTransformer
|
4 |
+
# from PyPDF2 import PdfReader
|
5 |
+
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
# from langchain.callbacks.manager import CallbackManager
|
7 |
+
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
8 |
+
# # from langchain.llms import LlamaCpp
|
9 |
+
# from langchain.vectorstores import Qdrant
|
10 |
+
# from qdrant_client.http import models
|
11 |
+
# # from langchain.llms import CTransformers
|
12 |
+
# from ctransformers import AutoModelForCausalLM
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
# # loading the embedding model -
|
19 |
+
|
20 |
+
# encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1')
|
21 |
+
|
22 |
+
# print("embedding model loaded.............................")
|
23 |
+
# print("####################################################")
|
24 |
+
|
25 |
+
# # loading the LLM
|
26 |
+
|
27 |
+
# callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
28 |
+
|
29 |
+
# print("loading the LLM......................................")
|
30 |
+
|
31 |
+
# # llm = LlamaCpp(
|
32 |
+
# # model_path="TheBloke/Llama-2-7B-Chat-GGUF/llama-2-7b-chat.Q8_0.gguf",
|
33 |
+
# # n_ctx=2048,
|
34 |
+
# # f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
|
35 |
+
# # callback_manager=callback_manager,
|
36 |
+
# # verbose=True,
|
37 |
+
# # )
|
38 |
+
|
39 |
+
# llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-Chat-GGUF",
|
40 |
+
# model_file="llama-2-7b-chat.Q8_0.gguf",
|
41 |
+
# model_type="llama",
|
42 |
+
# # config = ctransformers.hub.AutoConfig,
|
43 |
+
# # hf = True
|
44 |
+
# temperature = 0.2,
|
45 |
+
# max_new_tokens = 1024,
|
46 |
+
# stop = ['\n']
|
47 |
+
# )
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
# print("LLM loaded........................................")
|
52 |
+
# print("################################################################")
|
53 |
+
|
54 |
+
# def get_chunks(text):
|
55 |
+
# text_splitter = RecursiveCharacterTextSplitter(
|
56 |
+
# # seperator = "\n",
|
57 |
+
# chunk_size = 500,
|
58 |
+
# chunk_overlap = 100,
|
59 |
+
# length_function = len,
|
60 |
+
# )
|
61 |
+
|
62 |
+
# chunks = text_splitter.split_text(text)
|
63 |
+
# return chunks
|
64 |
+
|
65 |
+
|
66 |
+
# pdf_path = './100 Weird Facts About the Human Body.pdf'
|
67 |
+
|
68 |
+
|
69 |
+
# reader = PdfReader(pdf_path)
|
70 |
+
# text = ""
|
71 |
+
# num_of_pages = len(reader.pages)
|
72 |
+
# for page in range(num_of_pages):
|
73 |
+
# current_page = reader.pages[page]
|
74 |
+
# text += current_page.extract_text()
|
75 |
+
|
76 |
+
|
77 |
+
# chunks = get_chunks(text)
|
78 |
+
|
79 |
+
# print("Chunks are ready.....................................")
|
80 |
+
# print("######################################################")
|
81 |
+
|
82 |
+
# qdrant = QdrantClient(path = "./db")
|
83 |
+
# print("db created................................................")
|
84 |
+
# print("#####################################################################")
|
85 |
+
|
86 |
+
# qdrant.recreate_collection(
|
87 |
+
# collection_name="my_facts",
|
88 |
+
# vectors_config=models.VectorParams(
|
89 |
+
# size=encoder.get_sentence_embedding_dimension(), # Vector size is defined by used model
|
90 |
+
# distance=models.Distance.COSINE,
|
91 |
+
# ),
|
92 |
+
# )
|
93 |
+
|
94 |
+
# print("Collection created........................................")
|
95 |
+
# print("#########################################################")
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
# li = []
|
100 |
+
# for i in range(len(chunks)):
|
101 |
+
# li.append(i)
|
102 |
+
|
103 |
+
# dic = zip(li, chunks)
|
104 |
+
# dic= dict(dic)
|
105 |
+
|
106 |
+
# qdrant.upload_records(
|
107 |
+
# collection_name="my_facts",
|
108 |
+
# records=[
|
109 |
+
# models.Record(
|
110 |
+
# id=idx,
|
111 |
+
# vector=encoder.encode(dic[idx]).tolist(),
|
112 |
+
# payload= {dic[idx][:5] : dic[idx]}
|
113 |
+
# ) for idx in dic.keys()
|
114 |
+
# ],
|
115 |
+
# )
|
116 |
+
|
117 |
+
# print("Records uploaded........................................")
|
118 |
+
# print("###########################################################")
|
119 |
+
|
120 |
+
# def chat(question):
|
121 |
+
# # question = input("ask question from pdf.....")
|
122 |
+
|
123 |
+
|
124 |
+
# hits = qdrant.search(
|
125 |
+
# collection_name="my_facts",
|
126 |
+
# query_vector=encoder.encode(question).tolist(),
|
127 |
+
# limit=3
|
128 |
+
# )
|
129 |
+
# context = []
|
130 |
+
# for hit in hits:
|
131 |
+
# context.append(list(hit.payload.values())[0])
|
132 |
+
|
133 |
+
# context = context[0] + context[1] + context[2]
|
134 |
+
|
135 |
+
# system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
|
136 |
+
# Read the given context before answering questions and think step by step. If you can not answer a user question based on
|
137 |
+
# the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""
|
138 |
+
|
139 |
+
|
140 |
+
# B_INST, E_INST = "[INST]", "[/INST]"
|
141 |
+
|
142 |
+
# B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
143 |
+
|
144 |
+
# SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS
|
145 |
+
|
146 |
+
# instruction = f"""
|
147 |
+
# Context: {context}
|
148 |
+
# User: {question}"""
|
149 |
+
|
150 |
+
# prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
|
151 |
+
|
152 |
+
# result = llm(prompt_template)
|
153 |
+
# return result
|
154 |
+
|
155 |
+
# gr.Interface(
|
156 |
+
# fn = chat,
|
157 |
+
# inputs = gr.Textbox(lines = 10, placeholder = "Enter your question here π"),
|
158 |
+
# outputs = gr.Textbox(lines = 10, placeholder = "Your answer will be here soon π"),
|
159 |
+
# title="Q&N with PDF π©π»βπ»πβπ»π‘",
|
160 |
+
# description="This app facilitates a conversation with PDFs available on https://www.delo.si/assets/media/other/20110728/100%20Weird%20Facts%20About%20the%20Human%20Body.pdfπ‘",
|
161 |
+
# theme="soft",
|
162 |
+
# examples=["Hello", "what is the speed of human nerve impulses?"],
|
163 |
+
# # cache_examples=True,
|
164 |
+
# ).launch()
|
165 |
+
|
166 |
+
|
167 |
import gradio as gr
|
168 |
+
from threading import Thread
|
169 |
+
from queue import SimpleQueue
|
170 |
+
from typing import Any, Dict, List, Union
|
171 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
172 |
+
from langchain.schema import LLMResult
|
173 |
from qdrant_client import models, QdrantClient
|
174 |
from sentence_transformers import SentenceTransformer
|
175 |
from PyPDF2 import PdfReader
|
176 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
177 |
+
from qdrant_client.models import PointStruct
|
178 |
+
import os
|
179 |
from langchain.callbacks.manager import CallbackManager
|
180 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
181 |
+
# from qdrant_client import QdrantClient
|
182 |
+
# from langchain import VectorDBQA - This is obsolete
|
183 |
+
from langchain.chains import RetrievalQA
|
184 |
+
from langchain.llms import LlamaCpp
|
185 |
+
# from PyPDF2 import PdfReader
|
186 |
from langchain.vectorstores import Qdrant
|
187 |
+
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
188 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
189 |
+
from transformers import AutoModel
|
190 |
from qdrant_client.http import models
|
191 |
+
# from sentence_transformers import SentenceTransformer
|
192 |
+
from langchain.prompts import PromptTemplate
|
193 |
from ctransformers import AutoModelForCausalLM
|
194 |
|
|
|
|
|
|
|
|
|
195 |
# loading the embedding model -
|
196 |
|
197 |
+
encoder = SentenceTransformer("all-MiniLM-L6-v2")
|
198 |
|
199 |
print("embedding model loaded.............................")
|
200 |
print("####################################################")
|
|
|
206 |
print("loading the LLM......................................")
|
207 |
|
208 |
# llm = LlamaCpp(
|
209 |
+
# model_path="/home/devangpagare/llm/models/llama-2-7b-chat.Q3_K_S.gguf",
|
210 |
+
# # n_gpu_layers=n_gpu_layers,
|
211 |
+
# # n_batch=n_batch,
|
212 |
# n_ctx=2048,
|
213 |
# f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
|
214 |
# callback_manager=callback_manager,
|
|
|
216 |
# )
|
217 |
|
218 |
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-Chat-GGUF",
|
219 |
+
model_file="llama-2-7b-chat.Q3_K_S.gguf",
|
220 |
model_type="llama",
|
221 |
# config = ctransformers.hub.AutoConfig,
|
222 |
# hf = True
|
223 |
temperature = 0.2,
|
224 |
+
# max_new_tokens = 1024,
|
225 |
+
# stop = ['\n']
|
226 |
)
|
227 |
|
228 |
|
|
|
229 |
print("LLM loaded........................................")
|
230 |
print("################################################################")
|
231 |
|
|
|
253 |
|
254 |
|
255 |
chunks = get_chunks(text)
|
256 |
+
print(chunks)
|
257 |
print("Chunks are ready.....................................")
|
258 |
print("######################################################")
|
259 |
|
|
|
273 |
print("#########################################################")
|
274 |
|
275 |
|
276 |
+
# starting a list of same size as chunks
|
277 |
li = []
|
278 |
for i in range(len(chunks)):
|
279 |
li.append(i)
|
280 |
+
# concantinating the li and chunks to create a dcitionary
|
281 |
dic = zip(li, chunks)
|
282 |
dic= dict(dic)
|
283 |
|
|
|
288 |
id=idx,
|
289 |
vector=encoder.encode(dic[idx]).tolist(),
|
290 |
payload= {dic[idx][:5] : dic[idx]}
|
291 |
+
## payload is always suppose to be a dictionary with both keys and values as strings. To do this, I used first 5 chars of
|
292 |
+
## every value as key to make the payload.
|
293 |
) for idx in dic.keys()
|
294 |
],
|
295 |
)
|
|
|
308 |
)
|
309 |
context = []
|
310 |
for hit in hits:
|
311 |
+
# print(hit.payload, "score:", hit.score)
|
312 |
context.append(list(hit.payload.values())[0])
|
313 |
+
# context += str(hit.payload[hit.payload.values()[:5]])
|
314 |
+
# print("##################################################################")
|
315 |
+
|
316 |
context = context[0] + context[1] + context[2]
|
317 |
|
318 |
system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
|
|
|
345 |
examples=["Hello", "what is the speed of human nerve impulses?"],
|
346 |
# cache_examples=True,
|
347 |
).launch()
|
348 |
+
|
349 |
+
|