Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer,StoppingCriteria,StoppingCriteriaList,pipeline | |
from langchain.chains import ConversationChain | |
from langchain.chains.conversation.memory import ConversationBufferWindowMemory | |
from langchain.llms import HuggingFacePipeline | |
from langchain import PromptTemplate | |
from typing import List | |
import torch | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
model = AutoModelForCausalLM.from_pretrained("gpt2") | |
generation_config = model.generation_config | |
generation_config.temperature = 0 | |
generation_config.num_return_sequences = 1 | |
generation_config.max_new_tokens = 256 | |
generation_config.use_cache = False | |
generation_config.repetition_penalty = 1.7 | |
generation_config.pad_token_id = tokenizer.eos_token_id | |
generation_config.eos_token_id = tokenizer.eos_token_id | |
generation_config | |
stop_tokens = [["Human", ":"], ["AI", ":"]] | |
class StopGenerationCriteria(StoppingCriteria): | |
def __init__( | |
self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device | |
): | |
stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens] | |
self.stop_token_ids = [ | |
torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids | |
] | |
def __call__( | |
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs | |
) -> bool: | |
for stop_ids in self.stop_token_ids: | |
if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all(): | |
return True | |
return False | |
stopping_criteria = StoppingCriteriaList( | |
[StopGenerationCriteria(stop_tokens, tokenizer, model.device)] | |
) | |
class StopGenerationCriteria(StoppingCriteria): | |
def __init__( | |
self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device | |
): | |
stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens] | |
self.stop_token_ids = [ | |
torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids | |
] | |
def __call__( | |
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs | |
) -> bool: | |
for stop_ids in self.stop_token_ids: | |
if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all(): | |
return True | |
return False | |
generation_pipeline = pipeline( | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=True, | |
task="text-generation", | |
stopping_criteria=stopping_criteria, | |
generation_config=generation_config, | |
) | |
llm = HuggingFacePipeline(pipeline=generation_pipeline) | |
template = """ | |
The following | |
Current conversation: | |
{history} | |
Human: {input} | |
AI:""".strip() | |
prompt = PromptTemplate(input_variables=["history", "input"], template=template) | |
memory = ConversationBufferWindowMemory( | |
memory_key="history", k=6, return_only_outputs=True | |
) | |
chain = ConversationChain( | |
llm=llm, | |
prompt=prompt, | |
verbose=True, | |
) | |
def generate_response(input_text): | |
res=chain.invoke(input_text) | |
print('response:',res) | |
print(4444444444444444444444444444444444444444444444) | |
inputs = tokenizer(input_text, return_tensors="pt") | |
outputs = model.generate(inputs.input_ids, max_length=50) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return res | |
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text") | |
iface.launch() |