File size: 1,607 Bytes
d989353
 
 
903f1a6
d0df95e
903f1a6
d989353
08c738e
903f1a6
 
d989353
903f1a6
 
d989353
903f1a6
 
d989353
d0df95e
903f1a6
d989353
903f1a6
 
d989353
d0df95e
903f1a6
d989353
 
903f1a6
 
d989353
 
903f1a6
 
d989353
903f1a6
 
d989353
4bc7f77
903f1a6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import requests
import torch
from PIL import Image
from transformers import LlamaForConditionalGeneration, AutoProcessor

# Define the model ID, replace with the correct ID if needed
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"

# Load the model in bfloat16 or float16 if needed
model = LlamaForConditionalGeneration.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,  # Change to torch.float16 if hardware doesn't support bfloat16
    device_map="auto",  # Automatically selects the appropriate device
)

# Load the processor
processor = AutoProcessor.from_pretrained(model_id)

# Define an image URL
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"

# Fetch the image using requests
image = Image.open(requests.get(url, stream=True).raw)

# Define the messages in a format the model understands (adjust as needed)
messages = [
    {"role": "user", "content": [
        {"type": "image"},  # This indicates that the input contains an image
        {"type": "text", "text": "Can you please describe this image in one sentence?"}
    ]}
]

# Generate input text with the processor
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)

# Process the image and input text, prepare them for the model
inputs = processor(image, input_text, return_tensors="pt").to(model.device)

# Run the model to generate a response
output = model.generate(**inputs, max_new_tokens=70)

# Decode and print the output
print(processor.decode(output[0][inputs["input_ids"].shape[-1]:]))