Spaces:
No application file
No application file
import torch, math | |
class AdamOptim(torch.optim.Optimizer): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.98), eps=1e-9, **kwargs): | |
defaults = dict(lr=lr, betas=betas, eps=eps) | |
super().__init__(params, defaults) | |
def step(self, closure=None): | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
# No backward | |
continue | |
grad = p.grad | |
state = self.state[p] | |
if len(state) == 0: | |
# Initial step | |
state['step'] = 0 | |
state['exp_avg'] = torch.zeros_like(p) | |
state['exp_avg_sq'] = torch.zeros_like(p) | |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
beta1, beta2 = group['betas'] | |
state['step'] += 1 | |
bias_correction1 = 1 - beta1 ** state['step'] | |
bias_correction2 = 1 - beta2 ** state['step'] | |
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | |
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) | |
step_size = group['lr'] / bias_correction1 | |
p.addcdiv_(exp_avg, denom, value=-step_size) | |