Cristian commited on
Commit
1b3e839
1 Parent(s): cea7bd2
Files changed (2) hide show
  1. app.py +9 -2
  2. requirements.txt +4 -4
app.py CHANGED
@@ -2,15 +2,19 @@ import gradio as gr
2
  from langchain.chat_models import ChatOpenAI
3
  from langchain.chains import ConversationChain
4
  from transformers import pipeline
 
 
5
 
6
  model_name="nateraw/bert-base-uncased-emotion"
7
  model = pipeline('text-classification', model_name, truncation=True)
8
 
9
- from transformers import AutoTokenizer, AutoModelWithLMHead
10
  model_name = "mrm8488/t5-base-finetuned-emotion"
11
  tokenizer = AutoTokenizer.from_pretrained(model_name)
12
  model_t5 = AutoModelWithLMHead.from_pretrained(model_name)
13
 
 
 
 
14
  def get_emotion(text):
15
  input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
16
  output = model_t5.generate(input_ids=input_ids, return_dict_in_generate=True, output_scores=True)
@@ -37,7 +41,10 @@ with gr.Blocks() as demo:
37
  label_value = f"{l['label']} [{l['score']}]"
38
  label_value_t5 = get_emotion(bot_message)
39
 
40
- return "", chat_history, f"Model1: {label_value_t5} - Model2: {label_value}"
 
 
 
41
 
42
  msg.submit(respond, [msg, chatbot], [msg, chatbot, label_text])
43
 
 
2
  from langchain.chat_models import ChatOpenAI
3
  from langchain.chains import ConversationChain
4
  from transformers import pipeline
5
+ from transformers import AutoTokenizer, AutoModelWithLMHead
6
+
7
 
8
  model_name="nateraw/bert-base-uncased-emotion"
9
  model = pipeline('text-classification', model_name, truncation=True)
10
 
 
11
  model_name = "mrm8488/t5-base-finetuned-emotion"
12
  tokenizer = AutoTokenizer.from_pretrained(model_name)
13
  model_t5 = AutoModelWithLMHead.from_pretrained(model_name)
14
 
15
+ model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
16
+ sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
17
+
18
  def get_emotion(text):
19
  input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
20
  output = model_t5.generate(input_ids=input_ids, return_dict_in_generate=True, output_scores=True)
 
41
  label_value = f"{l['label']} [{l['score']}]"
42
  label_value_t5 = get_emotion(bot_message)
43
 
44
+ s = sentiment_task(bot_message)
45
+ sentiment_value = f"{s['label']} [{s['score']}]"
46
+
47
+ return "", chat_history, f"Emotion [1]: {label_value_t5} - Emotion [2]: {label_value} - Sentiment : {sentiment_value}"
48
 
49
  msg.submit(respond, [msg, chatbot], [msg, chatbot, label_text])
50
 
requirements.txt CHANGED
@@ -1,5 +1,5 @@
1
- langchain
2
- openai
3
- transformers
4
- torch
5
  sentencepiece
 
1
+ langchain
2
+ openai
3
+ transformers
4
+ torch
5
  sentencepiece