Cristian commited on
Commit
7a11ed0
1 Parent(s): 1715b68
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -9,13 +9,15 @@ from transformers import AutoTokenizer, AutoModelWithLMHead
9
  model_name="bhadresh-savani/bert-base-go-emotion"
10
  model = pipeline('text-classification', model_name, truncation=True)
11
 
 
12
  model_name = "mrm8488/t5-base-finetuned-emotion"
13
  tokenizer = AutoTokenizer.from_pretrained(model_name)
14
  model_t5 = AutoModelWithLMHead.from_pretrained(model_name)
15
-
16
  model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
17
  sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
18
 
 
19
  def get_emotion(text):
20
  input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
21
  output = model_t5.generate(input_ids=input_ids, return_dict_in_generate=True, output_scores=True)
@@ -23,7 +25,7 @@ def get_emotion(text):
23
  dec = [tokenizer.decode(ids) for ids in output.sequences]
24
  score = transition_scores.min().item()
25
  return f"{dec[0].replace('<pad>','').replace('</s>','').strip()} [{score}]"
26
-
27
  chat = ChatOpenAI()
28
  conversation = ConversationChain(llm=chat)
29
  #Write a text example of someone angry
@@ -40,12 +42,12 @@ with gr.Blocks() as demo:
40
 
41
  l = model(bot_message)[0]
42
  label_value = f"{l['label']} [{l['score']}]"
43
- label_value_t5 = get_emotion(bot_message)
44
 
45
  s = sentiment_task(bot_message)[0]
46
  sentiment_value = f"{s['label']} [{s['score']}]"
47
 
48
- return "", chat_history, f"Emotion [1]: {label_value_t5} - Emotion [2]: {label_value} - Sentiment : {sentiment_value}"
49
 
50
  msg.submit(respond, [msg, chatbot], [msg, chatbot, label_text])
51
 
 
9
  model_name="bhadresh-savani/bert-base-go-emotion"
10
  model = pipeline('text-classification', model_name, truncation=True)
11
 
12
+ """
13
  model_name = "mrm8488/t5-base-finetuned-emotion"
14
  tokenizer = AutoTokenizer.from_pretrained(model_name)
15
  model_t5 = AutoModelWithLMHead.from_pretrained(model_name)
16
+ """
17
  model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
18
  sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
19
 
20
+ """
21
  def get_emotion(text):
22
  input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
23
  output = model_t5.generate(input_ids=input_ids, return_dict_in_generate=True, output_scores=True)
 
25
  dec = [tokenizer.decode(ids) for ids in output.sequences]
26
  score = transition_scores.min().item()
27
  return f"{dec[0].replace('<pad>','').replace('</s>','').strip()} [{score}]"
28
+ """
29
  chat = ChatOpenAI()
30
  conversation = ConversationChain(llm=chat)
31
  #Write a text example of someone angry
 
42
 
43
  l = model(bot_message)[0]
44
  label_value = f"{l['label']} [{l['score']}]"
45
+ #label_value_t5 = get_emotion(bot_message)
46
 
47
  s = sentiment_task(bot_message)[0]
48
  sentiment_value = f"{s['label']} [{s['score']}]"
49
 
50
+ return "", chat_history, f"Emotion: {label_value} - Sentiment: {sentiment_value}"
51
 
52
  msg.submit(respond, [msg, chatbot], [msg, chatbot, label_text])
53