File size: 4,489 Bytes
af3d42a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
import onnxruntime as ort
from text import cantonese, english, cleaned_text_to_sequence

language_module_map = {"EN": english, "YUE": cantonese}

def clean_text(text, language):
    language_module = language_module_map[language]
    norm_text = language_module.text_normalize(text)
    phones, tones, word2ph = language_module.g2p(norm_text)
    return norm_text, phones, tones, word2ph


def convert_pad_shape(pad_shape):
    layer = pad_shape[::-1]
    pad_shape = [item for sublist in layer for item in sublist]
    return pad_shape


def sequence_mask(length, max_length=None):
    if max_length is None:
        max_length = length.max()
    x = np.arange(max_length, dtype=length.dtype)
    return np.expand_dims(x, 0) < np.expand_dims(length, 1)


def generate_path(duration, mask):
    """
    duration: [b, 1, t_x]
    mask: [b, 1, t_y, t_x]
    """

    b, _, t_y, t_x = mask.shape
    cum_duration = np.cumsum(duration, -1)

    cum_duration_flat = cum_duration.reshape(b * t_x)
    path = sequence_mask(cum_duration_flat, t_y)
    path = path.reshape(b, t_x, t_y)
    path = path ^ np.pad(path, ((0, 0), (1, 0), (0, 0)))[:, :-1]
    path = np.expand_dims(path, 1).transpose(0, 1, 3, 2)
    return path


class OnnxInferenceSession:
    def __init__(self, path, Providers=["CPUExecutionProvider"]):
        self.enc = ort.InferenceSession(path["enc"], providers=Providers)
        self.emb_g = ort.InferenceSession(path["emb_g"], providers=Providers)
        self.dp = ort.InferenceSession(path["dp"], providers=Providers)
        self.sdp = ort.InferenceSession(path["sdp"], providers=Providers)
        self.flow = ort.InferenceSession(path["flow"], providers=Providers)
        self.dec = ort.InferenceSession(path["dec"], providers=Providers)

    def __call__(
        self,
        seq,
        tone,
        language,
        bert_en,
        bert_yue,
        sid,
        seed=114514,
        seq_noise_scale=0.8,
        sdp_noise_scale=0.6,
        length_scale=1.0,
        sdp_ratio=0.0,
    ):
        if seq.ndim == 1:
            seq = np.expand_dims(seq, 0)
        if tone.ndim == 1:
            tone = np.expand_dims(tone, 0)
        if language.ndim == 1:
            language = np.expand_dims(language, 0)
        assert (seq.ndim == 2, tone.ndim == 2, language.ndim == 2)
        g = self.emb_g.run(
            None,
            {
                "sid": sid.astype(np.int64),
            },
        )[0]
        g = np.expand_dims(g, -1)

        enc_rtn = self.enc.run(
            None,
            {
                "x": seq.astype(np.int64),
                "t": tone.astype(np.int64),
                "language": language.astype(np.int64),
                "bert_0": bert_en.astype(np.float32),
                "bert_1": bert_yue.astype(np.float32),
                "g": g.astype(np.float32),
            },
        )
        x, m_p, logs_p, x_mask = enc_rtn[0], enc_rtn[1], enc_rtn[2], enc_rtn[3]
        np.random.seed(seed)
        zinput = np.random.randn(x.shape[0], 2, x.shape[2]) * sdp_noise_scale
        logw = self.sdp.run(
            None, {"x": x, "x_mask": x_mask,
                   "zin": zinput.astype(np.float32), "g": g}
        )[0] * (sdp_ratio) + self.dp.run(None, {"x": x, "x_mask": x_mask, "g": g})[
            0
        ] * (
            1 - sdp_ratio
        )
        w = np.exp(logw) * x_mask * length_scale
        w_ceil = np.ceil(w)
        y_lengths = np.clip(np.sum(w_ceil, (1, 2)), a_min=1.0, a_max=100000).astype(
            np.int64
        )
        y_mask = np.expand_dims(sequence_mask(y_lengths, None), 1)
        attn_mask = np.expand_dims(x_mask, 2) * np.expand_dims(y_mask, -1)
        attn = generate_path(w_ceil, attn_mask)
        m_p = np.matmul(attn.squeeze(1), m_p.transpose(0, 2, 1)).transpose(
            0, 2, 1
        )  # [b, t', t], [b, t, d] -> [b, d, t']
        logs_p = np.matmul(attn.squeeze(1), logs_p.transpose(0, 2, 1)).transpose(
            0, 2, 1
        )  # [b, t', t], [b, t, d] -> [b, d, t']

        z_p = (
            m_p
            + np.random.randn(m_p.shape[0], m_p.shape[1], m_p.shape[2])
            * np.exp(logs_p)
            * seq_noise_scale
        )

        z = self.flow.run(
            None,
            {
                "z_p": z_p.astype(np.float32),
                "y_mask": y_mask.astype(np.float32),
                "g": g,
            },
        )[0]

        return self.dec.run(None, {"z_in": z.astype(np.float32), "g": g})[0]